
The design, concrete security and efficiency
of isogeny-based cryptography

Maria Corte-Real Santos
University College London

Department of Computer Science

Submitted to University College London (UCL) in partial fulfilment of the

requirements for the award of the degree of Doctor of Philosophy.

Thesis submission date: October 19, 2024

Declaration

I, Maria Corte-Real Santos confirm that the work presented in my thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated in the
thesis.

Maria Corte-Real Santos
London, United Kingdom

October 19, 2024

2

Abstract

The security of most public-key cryptosystems that are currently deployed rely on the hardness
of the discrete logarithm problem or of the integer factorisation problem. In 1994, Shor gave a
devastating polynomial-time quantum attack against these problems, showing that cryptosystems
that rely on their hardness are not secure in the presence of a quantum adversary. Considering
the increased investment in the development of large-scale quantum computers, in 2016, NIST
began an effort to standardise post-quantum secure key encapsulation mechanisms and signature
schemes.

We work with a specific type of post-quantum cryptography considered by NIST: isogeny-based
cryptography, where security rests on the hardness of the isogeny problem. This problem asks,
given two elliptic curves, to find a “nice” map, called an isogeny, between them. In the first part
of this thesis, we explore the concrete security of this problem when working with supersingular
elliptic curves. Viewing an elliptic curve as one-dimensional specialisation of a more abstract
mathematical object, namely an abelian variety, we also study the generalisation of the isogeny
problem to higher dimensions. In the next part, we focus on the recent shift towards using isogenies
between two-dimensional abelian varieties to construct new protocols, and present efficient formulæ
for computing such isogenies of odd degree.

We then focus on SQIsign, the only isogeny-based signature scheme that was submitted to
NIST’s alternate call for signatures. SQIsign boasts the smallest combined signature and public key
sizes. However, finding SQIsign-friendly parameters has proved to be a difficult task. We provide
a solution to this by presenting the first practical parameters for all security levels. Despite this,
SQIsign is still considerably slower than other alternatives. Noting that SQIsign is most interesting
in scenarios that require small signature sizes and fast verification, we also present work that
accelerates SQIsign verification, without sacrificing the signature size.

3

Impact Statement

The results presented in this thesis contribute to the development of post-quantum secure cryp-
tosystems, focusing particularly on isogeny-based cryptography. This thesis demonstrates how
to gain a better understanding of the concrete security of the hardness assumption underlying
isogeny-based cryptography. This is important for selecting parameters that reach a certain level
of security, and improving the general confidence in isogeny-based cryptography. One of the main
obstacles for isogeny-based cryptography to be used in practice is its efficiency. In this thesis,
we furthermore introduce new techniques to accelerate isogeny-based cryptography. This includes
techniques that are targeted specifically towards SQIsign, a promising isogeny-based signature
scheme, as well as methods that improve the efficiency of isogenies between higher-dimensional
generalisations of elliptic curves, which have shown to be indispensable in isogeny-based cryptog-
raphy since the polynomial time attacks against prominent isogeny-based scheme SIDH/SIKE in
2022.

Since 2016, the National Institute of Standards and Technology (NIST) has looked towards
standardising post-quantum cryptography in response to the substantial advancement of quantum
computing. NIST cryptographic standards inform what cryptography is deployed by the United
States Government and in industry. We note that they have impact outside the United States as
many international bodies seek to also comply with NIST standards.

Most pertinent to this thesis is NIST’s alternate call for post-quantum secure signature schemes
in 2023, to which SQIsign was submitted and has progressed to Round 1. Our work on parameter
finding for SQIsign directly impacted the methods used to find parameters for all security levels
for the NIST submission.

SQIsign is currently the candidate that comes closest to the data sizes transmitted in pre-
quantum elliptic curve signatures, however signing and verification are slow. The variant of SQIsign
presented in this thesis, namely AprèsSQI, specifically targets applications where the amount of
data transmitted is crucial and fast verification is desirable. A few common examples include
long-term signatures, specifically public-key certificates, code updates for small devices, and smart
cards. If SQIsign is standardised through the NIST process, it is plausible that this variant of
SQIsign will become interesting for such applications in industry.

Finally, all the content in this thesis has been published to conference proceedings or journals, as
well as open access repositories. The accompanying software has also been made publicly available
on GitHub, and mostly written in open source languages (except for MAGMA). Therefore, it is easily
available to other researchers who are looking to use it to work on isogeny-based cryptography,
thus facilitating the future impact of this work.

4

Acknowledgements

My love for Mathematics began while I was a student at Murray Edwards College at the University
of Cambridge, and I owe a special thanks to my Directors of Studies Holly Krieger and Ana Khukhro
for encouraging me to start a PhD.

My PhD was funded by the UK EPSRC grant EP/S022503/1 that supports the Centre for
Doctoral Training in Cybersecurity delivered by UCL’s Departments of Computer Science, Security
and Crime Science, and Science, Technology, Engineering, and Public Policy.

Thank you to my supervisors Philipp Jovanovic and Sarah Meiklejohn for their time, patience,
and support throughout these four years, and for giving me the confidence to tackle the problems
that I found interesting.

Another person who deserves my sincere thanks is Craig Costello. Thank you for taking me
under your wing and introducing me to isogeny-based cryptography. Without your friendship,
constant encouragement and mentoring, my PhD would not have been the same.

Thank you to Vladimir Dockchister and his research group for allowing me to take part in your
reading groups and pretend to be a Mathematician every once in a while!

Thank you to Michael Naehrig and (again) to Craig Costello, for hosting me at Microsoft
Research as a Summer intern in 2023. That summer in Seattle was very important to me, and it
was a wonderful haven in the middle of my PhD that convinced me to stay in research. Much of
that was due to you both.

A special thank you to Sam, for all his support throughout my PhD.
Thank you to the SICQ. Together we got a Best Rump Session award and a Best Early Career

Paper award, but most importantly we shared many laughs.
Thank you to Benjamin Smith, for hosting me twice in Paris, and for his incredible insights

and advice.
Thank you to all my (not yet mentioned) collaborators, Giacomo Bruno, Victor Flynn, Francisco

Rodríguez-Henríquez, and Bruno Sterner, from whom I learnt many invaluable things.
Thank you to Simona Samardjiska for hosting me at Radboud University, and Damien Robert

for hosting me at the Univeristy of Bordeaux, for a week each during my PhD.
I want to (again) thank Craig Costello, Jonathan Komada Eriksen, Sam Frengley, Philipp Jo-

vanovic, Sarah Meiklejohn, and Michiel Van Beirendonck for giving their feedback on a preliminary
draft of this thesis.

Thank you to my sister for being a big part of my support system in London. Last, but certainly
not least, thank you to my parents. I am eternally grateful for their unwavering support and love,
and for encouraging me to continuously chase my dreams.

5

Table of contents

Introduction 9

List of Symbols 19

I Preliminaries 23

1 Cryptographic and Mathematical Preliminaries 24
1.1 Modern cryptography . 24
1.2 Mathematical preliminaries . 31

2 Abelian Varieties of Low Dimension 34
2.1 Curves . 34
2.2 Elliptic curves . 43
2.3 Hyperelliptic curves of genus 2 . 48
2.4 Abelian varieties . 50
2.5 Abelian surfaces . 52
2.6 Isogenies between abelian varieties . 54
2.7 Pairings . 57
2.8 Isogenies of principally polarised abelian varieties 60
2.9 Elliptic curves over finite fields . 65

3 Quaternion Algebras 67
3.1 Quaternion algebras . 67
3.2 The Deuring Correspondence . 70

4 Isogenies in cryptography 75
4.1 Superspecial abelian varieties . 75
4.2 The superspecial isogeny graph . 78
4.3 The general superspecial isogeny problem . 85

5 Quaternions in cryptography 89
5.1 The isogeny problem as a quaternion problem . 89
5.2 SQIsign: a signature scheme from isogenies . 91

6 Overview of Literature and Contributions 97
6.1 Foundations . 97
6.2 SIDH is broken . 101
6.3 Constructions . 102

6

II On the concrete complexity of the isogeny problem 106

7 The isogeny problem in dimension 1 109
7.1 Preliminaries . 112
7.2 An optimised implementation of the Delfs–Galbraith algorithm 114
7.3 Fast subfield root detection . 120
7.4 SuperSolver . 124
7.5 A worked example . 130
7.6 Implementation results . 134

8 The isogeny problem in dimension 2 141
8.1 Preliminaries . 145
8.2 Optimised product finding in X2(Fp, 2) . 145
8.3 Explicit moduli spaces for genus 2 curves with split Jacobians 150
8.4 Efficient detection of (N,N)-splittings . 153
8.5 The full algorithm . 158
8.6 Experimental results . 163

III Two-dimensional isogenies 167

9 (3, 3)-isogenies on fast Kummer Surfaces 168
9.1 Fast Kummer surfaces and their arithmetic . 171
9.2 (N,N)-isogenies on fast Kummer surfaces . 175
9.3 Explicit (3, 3)-isogenies on fast Kummers . 179
9.4 Generating (Nk, Nk)-subgroups . 184
9.5 A hash function from (3, 3)-isogenies . 189

IV Accelerating SQIsign 195

10 Cryptographic Smooth Neighbours 197
10.1 Preliminaries and prior methods . 201
10.2 The CHM algorithm . 203
10.3 Searching for large twin smooth instances: CHM in practice 206
10.4 Cryptographic primes of the form p = 2rn − 1 . 214
10.5 Results and comparisons . 217

11 Faster verification for SQIsign 229
11.1 Preliminaries . 232
11.2 Signing with extension fields . 234
11.3 Effect of increased 2•-torsion on verification . 239
11.4 Optimisations for verification . 243
11.5 Size-speed trade-offs in SQIsign signatures . 249
11.6 Primes and performance . 251

7

12 Conclusion 257

Bibliography 259

8

Introduction

In 1976, Diffie and Hellman [136] made a major breakthrough in cryptography. Or, as they aptly
put it:

“We stand today on the brink of a revolution in cryptography.”

Up until that point, communication was encrypted using a secret key that had been previously
agreed to through other means (for example, in person). Such a scenario would be very impractical
in today’s digital age. Indeed, before online communication could take place with another person
or server, one would have to meet to agree on a shared encryption key. Diffie and Hellman proposed
to instead split the cryptographic primitive in two parts: a private operation done by each party
using a private key leading to a piece of data that can be made public and used by other parties,
called a public key. Two parties can now use their private key and the public keys to derive a
shared secret key known only to the parties involved in this key exchange, which can henceforth
be used to encrypt their communications. Though the idea is simple, it is initially unclear how
one can build such a primitive. Diffie and Hellman’s article was revolutionary in that they further
provided an instantiation of this idea using the hardness of the discrete logarithm problem in finite
fields Fp, where p is a large prime: the Diffie–Hellman key exchange. The Diffie–Hellman protocol
has had a deep impact on modern cryptography; it provides a practical and secure way for two
parties to establish a shared secret over an insecure network, and thus forms the backbone of many
secure communication protocols in use today.

From this work, the field of public-key cryptography was invented, thus ushering in the age
of modern cryptography. Modern cryptography has proved essential to protect our online com-
munications by allowing us to send messages in a confidential manner, whilst ensuring they are
authentic and have not been altered. Cryptography is used in a variety of real world applications,
such as instant messaging and electronic commerce. Other forms of public-key cryptography have
since been constructed, most notably the RSA cryptosystem by Rivest, Shamir, and Adleman [270]
based on the hardness of factoring large integers, and elliptic curve cryptography (ECC).

The use of elliptic curves in cryptography was independently proposed by Miller [236] and
Koblitz [202] in the 1980s. Elliptic curves are algebraic curves that also naturally form a group
under the addition of points. Therefore, they provide an alternative instantiation of the prime
order groups used in Diffie–Hellman key-exchange, where the security rests on the hardness of
the discrete logarithm problem in the elliptic curve group. Having keys of smaller size (in bytes)
compared to other alternatives that give the same security, ECC has become a standard in public-
key cryptography. It is used in, for example, the TLS protocol [135] that facilitates secure internet
communications, and popular messaging applications such as WhatsApp [319] and Signal [291].
ECC has proved to be incredibly flexible, and more recently has been used in many blockchain
platforms and cryptocurrencies, such as Ethereum, for generating digital signatures, a primitive
that verifies the authenticity of digital information.

In his seminal 1995 paper, Shor exhibited a quantum polynomial time algorithm against both

9

the discrete logarithm problem and the integer factorisation problem [288]. If large-scale quantum
computers are built, all the primitives we have introduced thus far, which are essential for the
security of our online communications, will become insecure. The attack by Shor highlighted the
power of quantum computers. This sparked the race to develop new cryptography that can be
implemented using classical computers but can withstand attacks from quantum ones. This branch
of cryptography is called post-quantum cryptography.

In 2016, NIST initiated an effort to develop and standardize one or more public-key encapsu-
lation mechanisms (which provide secure encryption) and digital signature schemes using post-
quantum cryptography, with evaluation criteria being a scheme’s cost and performance, algorithm
and implementation characteristics, and security [310]. This security is categorised in five levels,
depicted in Table 1, with NIST placing a focus on Levels I, III, IV.

Security Description

Level I At least as hard to break as AES128 (Exhaustive Key Search)
Level II At least as hard to break as SHA256 (Collision Search)
Level III At least as hard to break as AES192 (Exhaustive Key Search)
Level IV At least as hard to break as SHA384 (Collision Search)
Level V At least as hard to break as AES256 (Exhaustive Key Search)

Table 1: Categories of NIST security levels

In 2020, NIST announced the schemes that had progressed to Round 3 of the standardisation
effort, categorised into five main families of post-quantum cryptography:

• Lattice-based cryptography: Constructs cryptographic protocols using lattices, and their se-
curity is based on the hardness of computational problems involving these lattices. Lattice-
based schemes are the most well-rounded in terms of security, performance, and communi-
cation cost.

• Code-based cryptography: Builds cryptographic schemes using error-correcting codes, such
as Goppa codes, and is the oldest form of post-quantum cryptography. However, the key
sizes are quite large.

• Multivariate-based cryptography: Based on the hardness of solving large systems of multi-
variate polynomial equations, these cryptosystems perform well in practice. A recent break
of the promising multivariate-based signature scheme Rainbow has, however, decreased the
confidence in their security [29].

• Hash-based cryptography: Constructs protocols using hash functions, and their security is
based on the security of cryptographic hash functions. As such, there is strong confidence in
their security. However, their key sizes are large, and they have only been used to construct
signature schemes.

• Isogeny-based cryptography: Rather than using points on a single curve as in ECC, we build
cryptographic protocols using maps between elliptic curves that have certain properties,

10

called isogenies. The security of these schemes is based on the general isogeny problem:
given two elliptic curves E1, E2 defined over a finite field, find an isogeny that maps E1 to
E2.

In this thesis, we explore isogeny-based cryptography. The use of isogenies for cryptography was first
proposed in 2006 independently by Couveignes [108] and Rostovtsev and Stolbunov [275]. Using or-
dinary elliptic curves, these proposals gave protocols that were largely impractical. Later, Charles,
Lauter, and Goren [76] built a cryptographic hash function using isogenies between supersingular
elliptic curves. Following this, De Feo, Jao, and Plût [123] proposed SIDH, a Diffie–Hellman-like
key exchange built from isogenies between supersingular elliptic curves. After optimisations due
to Costello, Longa, and Naehrig [104], SIDH became a more practical proposal, and its correspond-
ing encryption scheme SIKE was submitted to the NIST standardisation effort [10]. This brought
increased interest to isogeny-based cryptography.

As the youngest type of post-quantum cryptography, there was a large effort to study the
classical and quantum security of SIKE [228, 259, 262], and more generally of isogeny-based cryp-
tography [33, 107, 132]. The main hardness assumption underpinning the security of protocols
built from supersingular elliptic curves and their isogenies is the general supersingular isogeny
problem: given supersingular E1, E2 defined over Fp, find the isogeny φ : E1 → E2. This leads us
to the first contribution of this thesis: in Part II, we give an in-depth analysis of the concrete com-
plexity of the best classical attacks against the general supersingular isogeny problem. Viewing an
elliptic curve as a one-dimensional specialisation of a more abstract mathematical object, namely
an abelian variety, we also study the generalisation of the isogeny problem to two dimensions. In
both these settings, we go further and introduce new attacks with decreased concrete complexity,
which allow us to obtain a firmer grasp on the hardness of the isogeny problem in dimension 1 and
2.

The security of SIKE relied on a variant of the isogeny problem where an attacker is given
more information. This lead to a wave of polynomial time key recovery attacks which exploited
this extra information using higher dimensional isogenies (i.e., isogenies between higher dimensional
abelian varieties) to recover the secret key [67, 227, 271]. These attacks were devastating to SIKE’s
security, and as a result it was retracted from the NIST standardisation process. However, this
was far from being the death of isogenies. In fact, remarkably, the attacks against SIKE have
shown to be a very powerful constructive tool, breathing new life into isogeny-based cryptography.
The attacks and subsequent works (e.g., [19]) demonstrated that higher-dimensional isogenies are
crucial to both the understanding of the security of isogeny-based cryptography in dimension-
1, and to the construction of efficient and advanced protocols using isogenies. In Part III, we
advance the state-of-the-art on the computation of two-dimensional isogenies to facilitate their use
in cryptography.

In 2022, NIST standardised the lattice-based encapsulation mechanism called CRYSTALS-
KYBER [47], and digital signatures CRYSTALS-Dilithium [140], Falcon [161], and the hash-based
signature SPHINCS+ [28]. Except for SPHINCS+, all of these schemes are based on the com-
putational hardness of problems involving structured lattices. As such, NIST launched a call
for additional digital signature schemes for the post-quantum cryptography standardisation pro-
cess [309].

11

“NIST is primarily interested in additional general-purpose signature schemes that are
not based on structured lattices. For certain applications, such as certificate trans-
parency, NIST may also be interested in signature schemes that have short signatures
and fast verification.” - NIST [309, pg. 2]

Parallel to the development of SIDH, work by Kohel, Lauter, Petit, and Tignol [203] introduced
the Deuring correspondence to isogeny-based cryptography, connecting the world of quaternion
algebras to supersingular elliptic curves and their endomorphism rings. These two ingredients led
to the development of isogeny-based signature schemes, such as the GPS signature scheme [174]
and SQIsign [125]. In Part IV, we focus on SQIsign, the sole isogeny-based candidate that was
submitted to NIST’s alternate call for signatures, which has since entered Round 1. It offers
the smallest combined signature and public key sizes, and its security relies on isogeny-based
hardness assumptions. It is therefore a promising alternative to lattice-based signatures in the
NIST standardisation effort, and beyond. However, its signing and verification algorithms are very
slow. With this in mind, the work in the final part of this thesis makes new strides on improving
the efficiency of SQIsign.

Organisation of thesis

Part I: Preliminaries

• Chapter 1: We introduce cryptographic preliminaries that will be needed for the rest
of the thesis. Most notably, we formally define the main cryptographic protocol of
study: signature schemes constructed from identification protocols. We also present
a dictionary of foundational mathematical concepts that may be unfamiliar to a more
cryptographic audience.

• Chapter 2: We survey the main geometric objects underlying the contributions of this
thesis. This chapter covers algebraic curves and their Picard groups, abelian varieties
and (separable) isogenies between them. We focus in particular on principally polarised
abelian varieties of dimension 1, namely elliptic curves, and of dimension 2.

• Chapter 3: Motivated by the Deuring correspondence, we switch gears to a more alge-
braic setting and introduce maximal orders and ideals in quaternion algebras.

• Chapter 4: Now that we have laid the mathematical groundwork, we look at these
objects within a cryptographic context. In this chapter, we focus on the use of isoge-
nies between abelian varieties in cryptography. After introducing superspecial abelian
varieties and the superspecial isogeny graph, we define the general isogeny problem
in dimension g and the best attacks against it. Due to its conjectured hardness, this
problem underlies the security of all isogeny-based protocols.

• Chapter 5: In this chapter, we discuss how the Deuring correspondence can be used as
a useful tool in isogeny-based cryptography. We first show that the quaternionic version
of the general isogeny problem is solved in polynomial time by the KLPT algorithm.
Following this, we introduce SQIsign, an isogeny-based signature scheme built from
supersingular elliptic curves, the Deuring correspondence and the KLPT algorithm.

12

• Chapter 6: We present a comprehensive review of the literature surrounding the topics
studied, and detail the main contributions of the thesis.

The preliminaries in this thesis span many topics in algebraic geometry, number theory and
isogeny-based cryptography. To help a reader (who wants to focus on a particular chapter)
navigate the necessary content, we provide a flowchart of dependencies in Figure 1.

Part II: On the concrete complexity of the isogeny problem

• Chapter 7: In this chapter, we study the concrete complexity of the best classical attack
against the general isogeny problem in dimension 1. We extend this by introducing a
variant of the attack with improved concrete complexity.

• Chapter 8: Using a similar framework, we analyse and improve upon the concrete
complexity of the best classical algorithm that solves the general isogeny problem in
dimension 2.

Part III: Two-dimensional isogenies

• Chapter 9: Since the SIDH/SIKE attacks, there has been a shift towards using (N,N)-
isogenies, i.e., isogenies of degree N between two-dimensional (principally polarised)
abelian varieties, to build isogeny-based protocols. Though (2, 2)-isogenies have thus
far mostly been used due to their efficiency, it is likely that (N,N)-isogenies for larger
N will be needed for future research. In this chapter, we give a general method to
construct (N,N)-isogenies for any odd N , and exhibit the power of this method by
presenting efficient and explicit formulæ for computing (3, 3)-isogenies.

Part IV: Accelerating SQIsign

• Chapter 10: We present a novel method to finding pairs of integers (x, x ± 1) such
that x(x ± 1) is only divisible by small primes. Using this, we show how to construct
cryptographic sized primes as p = 2xn − 1 so that p2 − 1 is sufficiently smooth. Such
primes can then be used as parameters in SQIsign.

• Chapter 11: This chapter introduces a variant of SQIsign called AprèsSQI targeted to-
wards applications requiring small signatures and fast verification. To this end, we
increase the efficiency of SQIsign verification by allowing signing to occur over an ex-
tension field of Fp2 , and thus incurring a small degradation in signing time.

• Chapter 12: We conclude with summarising the contributions of this thesis, particularly in light
of recent work. We also give some brief comments on avenues for future work.

Publications

This thesis is, for the most part, a concatenation of published papers. Publications are ordered
chronologically and the list of authors of each paper is ordered alphabetically.1

1See https://www.ams.org/profession/leaders/CultureStatement04.pdf

13

https://www.ams.org/profession/leaders/CultureStatement04.pdf

Publications included in the thesis

We begin by presenting the published works that are included in this thesis, discussing my personal
contributions to each work.

[90] Maria Corte-Real Santos, Craig Costello, and Jia Shi. “Accelerat-
ing the Delfs–Galbraith Algorithm with Fast Subfield Root Detection”.
In Advances in Cryptology - CRYPTO 2022. 2nd Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part III, pages 285-314, 2022.

This paper studies the concrete complexity of the Delfs–Galbraith algorithm, the best attack
against the dimension-1 supersingular isogeny problem. It forms the basis of Chapter 7.

[60] Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan
Komada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner.
“Cryptographic Smooth Neighbors”. In Advances in Cryptology - ASI-
ACRYPT 2023 - 29th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Guangzhou, China, De-
cember 4-8, 2023, Proceedings, Part VII, pages 190-221, 2023.

This paper forms the basis of Chapter 10, and presents a new method to finding SQIsign-friendly
primes for all NIST security levels.

[88] Maria Corte-Real Santos, Craig Costello, and Sam Frengley. “An
Algorithm for Efficient Detection of (N,N)-Splittings and Its Application
to the Isogeny Problem in Dimension 2”. In Public-Key Cryptography -
PKC 2024 - 27th IACR International Conference on Practice and Theory
of Public-Key Cryptography, Sydney, NSW, Australia, April 15-17, 2024,
Proceedings, Part III, pages 157-189, 2024.

This paper analyses and improves the concrete security of Costello–Smith algorithm, the best
attack against the dimension-2 superspecial isogeny problem. It is presented in Chapter 8. It was
awarded the Best Paper Award at PKC 2024.

14

[92] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer,
and Krijn Reijnders. “AprèsSQI: Extra Fast Verification for SQIsign Us-
ing Extension-Field Signing”. In Advances in Cryptology - EUROCRYPT
2024 - 43rd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part I, pages 63-93, 2024.

We present this paper in Chapter 11. It introduces a new variant of the isogeny-based signature
schemes SQIsign, called AprèsSQI, which prioritises fast verification. It was awarded the Best Early
Career Paper Award at Eurocrypt 2024.

[91] Maria Corte-Real Santos, Craig Costello, and Benjamin Smith. “Effi-
cient (3, 3)-isogenies on fast Kummer surfaces”. To appear in Research in
Number Theory.

Moving to dimension 2, this paper introduces efficient formulæ for the computation of (3, 3)-
isogenies. It forms the basis of Chapter 9. We develop algorithms to compute chains of (3, 3)-
isogenies, which we use to construct a cryptographic hash function. By benchmarking our algo-
rithms against the state-of-the-art, we show that they outperform those in the literature by at
least a factor of 8.

Publications not included in this thesis

We now present the author’s published works that have not been included in this thesis.

[89] Maria Corte-Real Santos, Craig Costello, and Michael Naehrig. “On
Cycles of Pairing-Friendly Abelian Varieties”. In Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2024, Proceedings, Part IX, pages 221-
253, 2024.

An avenue for realising scalable proof systems relies on the existence of cycles of pairing-friendly
elliptic curves. In this work, we generalise the notion of cycles of pairing-friendly elliptic curves to
study cycles of pairing-friendly abelian varieties, and give several new constructions that can be
instantiated at any security level.

15

[277] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer,
and Francisco Rodríguez-Henríquez. “Finding Practical Parameters for
Isogeny-based Cryptography”. IACR Communications in Cryptology, vol.
1, no. 3, 2024.

In this paper, we present new methods that combine previous techniques for finding suitable primes
for isogeny-based cryptography. We apply these methods to find primes for SQIsign, AprèsSQI and
public-encryption scheme POKE. The parameters we propose provide the best performance among
all parameters proposed in the literature. Furthermore, the SQIsign primes we present were used
in the NIST submission SQIsign (NIST).

[94] Maria Corte-Real Santos, and E. Victor Flynn. “Isogenies on Kummer
Surfaces”. To appear in Mathematics of Computation.

In this paper, we give a cleaner and more direct approach to the derivation of the fast model of the
Kummer surface, which arises from the theory of theta functions. We then extend the methods
presented in previous joint work with Costello and Smith [91], to give algorithms to compute
(N,N)-isogenies for any odd N , both on the general Kummer surface (introduced by Cassels and
Flynn) and on the fast model. We also provide an accompanying implementation in MAGMA.

Preprints

This author also has a paper that has yet to be published that is not included in the thesis.

[95] Maria Corte-Real Santos and Krijn Reijnders. “Return of the Kum-
mer: a Toolbox for Genus-2 Cryptography”. In Cryptology ePrint Archive,
Paper 2024/948, 2024. https://eprint.iacr.org/2024/948

This paper expands the machinery we have for isogeny-based cryptography in genus 2 by devel-
oping a toolbox of algorithms for Kummer surfaces. To achieve this, we give a detailed landscape
of Kummer surfaces, develop a new technique for sampling torsion points using profiles of Tate
pairings, and present a new understanding of the connection between Richelot isogenies and iso-
genies constructed in the theta-model. We apply these new tools to show that one-dimensional
SQIsign verification can be viewed as a two-dimensional isogeny defined over Fp between products
of elliptic curves.

16

https://eprint.iacr.org/2024/948

Code accompanying this thesis

The code accompanying this thesis has been written in MAGMA [49], SageMath [311] and Python.
It is publicly available at the following GitHub repository:

https://github.com/mariascrs/thesis-code.

This repository contains submodules pointing towards the software associated to each chapter,
from Chapter 7 to Chapter 11. Throughout this work, we also directly reference the relevant
GitHub repositories in each chapter.

17

https://github.com/mariascrs/thesis-code

Q
uaternion

A
lgebras

Section
3.1

R
ings,

F
ields,

M
odules

C
urves

Section
2.1.3

R
ings,

F
ields,

G
alois

T
heory

D
euring

C
orrespondence

Section
3.2

T
he

K
LP

T
algorithm

Section
5.1.1

SQ
Isign

construction
&

param
eters

Section
5.2

C
hapter

10

C
hapter

11

H
yperelliptic

curves
and

their
Jacobians

Section
2.3

E
lliptic

curves
(over

F
q)

Section
2.2

(Section
2.9)

N
-isogenies

Section
2.8.1Supersingular

elliptic
curves

D
efinition

2.9.5,Section
4.1

Isogenies
betw

een
abelian

varieties
Section

2.6

(P
rincipally

polarised)
abelian

varieties
Section

2.4

A
belian

surfaces
Section

2.5
K

um
m

er
surfaces

Section
2.5.1

Superspecial
abelian

surfaces
Section

4.1

D
im

ension
2

graph
X

2 (F
p)

Section
4.2,4.2.2

D
im

ension
1

graph
X

1 (F
p)

Section
4.2,4.2.1

Isogeny
problem

in
dim

ension
2

and
best

attacks
Section

4.3,4.3.2

Isogeny
problem

in
dim

ension
1

and
best

attacks
Section

4.3,4.3.1

C
hapter

8

(N
,N

)-isogenies
Section

2.8.2

C
hapter

9

C
hapter

7

P
airings

Section
2.7

param
eters

Weilpairing

T
ate

pairing

F
ig

u
r
e

1:
V

isualising
the

dependencies
betw

een
the

prelim
inaries

(boxes
w

ith
w

hite
background)

and
the

m
ain

chapters
(boxes

w
ith

grey
background).

In
the

left-m
ost

boxes,w
e

detailin
italics

the
m

athem
aticalprelim

inaries
w

e
assum

e
from

Section
1.2.

T
he

dotted
arrow

s
depict

prelim
inaries

w
hich

are
desirable

but
not

necessary.

18

List of Symbols

Symbols introduced in preliminaries

log(x) Base-2 logarithm of x
A ⇋ B 3-move interactive protocol between parties A and B
Z/NZ Ring of integers modulo N
λ The security parameter, or principal polarisation of an

abelian variety (clear from context)
k Perfect field
char k Characteristic of field k (usually > 5)
k A (fixed) algebraic closure of a field k
Ok Ring of integers of the field k
Fp Finite field of order p
Fpk Degree k extension of Fp
Fq Finite field of characteristic p (i.e., q is a power of p)
Qp The p-adic numbers
Q(
√
d) A quadratic field

Gal(k′/k) The Galois group of the field extension k′/k
An Affine n-space
Pn Projective n-space
P(w0, . . . , wn) Weighted projective n-space with weights w0, . . . , wn

C A curve, usually hyperelliptic of genus g ≥ 1

k(C) Function field of a curve C
Pic0(C) The Picard group of an irreducible non-singular projective

curve C
Jac(C) or JC The Jacobian of an irreducible non-singular projective

curve C
π The Frobenius endomorphism, or a quotient map (clear

from context)
g The genus of a curve C, or the dimension of an abelian

variety
E An elliptic curve
0E The identity of elliptic curve group, and often the point at

infinity
j or j(E) The j-invariant of an elliptic curve E

19

Ed The quadratic twist of elliptic curve E by non-square d ∈
k×

Et The unique quadratic twist of elliptic curve E defined over
Fq

End(E) The endomorphism ring of elliptic curve E
A An abelian variety
0A The identity of the abelian variety
[N]A Multiplication-by-N endomorphism on the abelian variety

A

⊕ (or +) The group law on an abelian variety A
⊖ (or −) The inverse of the group law on A
λ, µ, ν Rosenhain invariants of a genus-2 curve
K A Kummer surface
I2, I4, I6, I10 The Igusa–Clebsch invariants of hyperelliptic curve C of

genus 2

eN The N -Weil pairing
TN The Tate pairing of order N
tN The reduced Tate pairing of order N
G The kernel of an (N, . . . , N)-isogeny, i.e., a maximal

isotropic subgroup of A[N]

φ, φ̂ An (N, . . . , N)-isogeny and its dual
degφ The degree of an isogeny φ
DN,g number of (N, . . . , N)-isogenies from a fixed domain p.p.

abelian variety of dimension g
ΦN (X,Y) Classical modular polynomial in Z[X,Y] of level N
ΦN,p(X,Y) Classical modular polynomial in Fp[X,Y] of level N
Bp,∞ The quaternion algebra over Q ramified at p and ∞, and

unramified elsewhere
α Conjugate of an element α ∈ Bp,∞
O Maximal order in Bp,∞
I, J,K Ideals in Bp,∞
OL(I) Left order of an ideal I
OR(I) Right order of an ideal I
trd The reduced trace of quaternion element α or ideal I
nrd The reduced norm of quaternion element α or ideal I
I The conjugate of an ideal I in Bp,∞
E0, O0 The elliptic curve E0 : y

2 = x3 + x with known endomor-
phism End(E0) ∼= O0

Iφ The ideal corresponding to an isogeny φ
Sg(Fp) Isomorphism classes of dimension-g superspecial p.p.

abelian varieties

20

Xg(Fp) Graph with node set Sg(Fp) and edges being isogenies of
p.p. abelian varieties

Xg(Fp, N) Graph with node set Sg(Fp) and edges being (N, . . . , N)-
isogenies

Sp2 The set of supersingular j-invariants in Fp2\Fp
Sp The set of supersingular j-invariants in Fp
J2(Fp) The set of superspecial p.p. abelian surfaces Fp-isomorphic

to the Jacobian of a hyperelliptic genus-2 curve
E2(Fp) The set of superspecial p.p. abelian surfaces Fp-isomorphic

to E1 × E2 for some supersingular elliptic curves E1, E2

SQIsign symbols

φsk The secret isogeny with domain E0 used as the signing key
Dsk The degree of the secret isogeny
Epk The image of the secret isogeny φsk used as the public ver-

ification key
φcom The commitment isogeny with domain E0

Dcom The degree of the commitment isogeny
Ecom The image of the commitment isogeny
φchall The challenge isogeny with domain Ecom

Dchall The degree of the challenge isogeny
Echall The image of the challenge isogeny
φresp The response isogeny, included in the SQIsign signature
2e The degree of the response isogeny
2f The degree of each block of the response isogeny

21

22

Part I
Preliminaries

23

Chapter 1

Cryptographic and Mathematical Pre-

liminaries

Before we begin our journey towards introducing the central objects of our study – abelian varieties
– and their use in isogeny-based cryptography, we present several important cryptographic and
mathematical preliminaries. A reader with a strong cryptographic background may choose to
skip Section 1.1 and simply consult this section for the definition of a term if necessary. Similarly,
those with a good understanding of the mathematical definitions can skip Section 1.2.

1.1 Modern cryptography

We begin by defining the main cryptographic objects and concepts that we will be working with
in this thesis. After presenting the basic building blocks we need throughout, we introduce digital
signature schemes, a fundamental cryptographic primitive, which is used in a myriad of applications
such as software distribution and financial transactions. Digital signatures will be central to the
work in this thesis. We focus particularly on signatures schemes that are derived from identification
schemes.

1.1.1 Basic definitions

We follow Katz and Lindell [201] to define basic concepts in modern cryptography that we will
need throughout the thesis.

We begin by introducing some basic notation. If x is a binary string, we let |x| denote its length.
If S is a finite set, we denote by #S its size and s $←− S denotes picking an element uniformly from
S and assigning it to s.

1.1.1.1 Efficient computation

We define efficient computation as that which can be carried out in polynomial time. An algorithm
is said to run in polynomial time if there exists a polynomial f(·) such that, for every input
x ∈ {0, 1}∗, the computation of the algorithm on x terminates in at most f(|x|) operations. We
use y ← Alg(x) to denote running an algorithm Alg on input x and assigning its output to y.
We also often work with probabilistic polynomial time (PPT) algorithms, namely polynomial time
algorithms with access to a source of randomness that yields unbiased random bits that are each
independently equal to 1 or 0 with probability 1

2 . We often distinguish a probabilistic algorithm

Alg using the notation y $←− Alg(x), for some input x and output y.

24

When determining the complexity of an algorithm or describing the size of certain inputs, we
work asymptotically and use the following notation.

Definition 1.1.1. For two functions f, g : R≥0 → R≥0, we say f(n) = o(g(n)) if for all C > 0,
there exists N ∈ N such that for all n > N , we have f(n) < Cg(n). We say f(n) = O(g(n)) if
there exists a constant C > 0, such that there exists an N ∈ N with f(n) < Cg(n) for all n > N .
Furthermore, we define Õ(f(n)) := O(f(n) log(n)k) for some k ∈ N.1

We say f(n) = ω(g(n)) if for all C > 0, there exists N ∈ N such that for all n > N , we have
f(n) > Cg(n). We say f(n) = Ω(g(n)) if there exists a constant C > 0, such that there exists
N ∈ N with f(n) > Cg(n) for all n > N .

Intuitively, the little-o notation says that f is dominated by g (for any constant factor C),
whereas the big-O notation describes f that is bounded above by g (up to a constant factor C).
The notation Õ ignores logarithmic factors in the big-O notation, and we often use this for clarity
of presentation. Conversely, the ω notation says that f dominates g (for any constant factor C),
and the Ω notation tells us that f is bounded below by g (up to a constant factor C).

Example 1.1.2. A polynomial time algorithm runs in O(ℓk) for some k ∈ N, where ℓ is the length
of the input. If an algorithm runs in O(2f(ℓ)) for some polynomial f , it is said to run in exponential
time.

In Chapters 7 and 8 we will seek to understand the concrete complexity of certain algorithms,
namely, we will explicitly determine the constant C. In the context of cryptography, the concrete
complexity is often important to fine-tune parameters in order to achieve a certain level of security.

We also introduce notation used to analyse the average-case complexity of an algorithm.

Definition 1.1.3. For two functions f, g : R≥0 → R≥0, we say f(n) = Θ(g(n)) if there are
constants C1, C2 > 0 and N ∈ N such that C1g(n) < f(n) < C2g(n) for all n > N . We define
Θ̃(f(n)) := Θ(f(n) log(n)k) for some k ∈ N.

1.1.1.2 Game-based security in cryptography

We fix a parameter λ, called the security parameter, with unary representation 1λ, which measures
the security of a cryptographic protocol. We use code-based games in our security definitions [21].
A game Gamesec

A (λ) is played with respect to a security notion sec and adversary A, modelled as
a PPT algorithm. It has a Main procedure whose output is the output of the game. We denote
by P (Gamesec

A (λ)) the probability that this output is equal to 1. In certain games, the adversary A
will have access to a random oracle, which responds to every unique query with a random response
chosen uniformly from its output domain. If a query is repeated, it responds in the same way.

In modern cryptography, a scheme is said to be secure according to some security notion sec
if it can be broken only with very small probability. In particular, if an adversary A can win
the corresponding game Gamesec

A with probability 1/f(n) where f is a polynomial taking positive
values, then it is not secure. Conversely, we consider our scheme to be secure if the probability is
asymptotically smaller than 1/f(n) for every polynomial f taking positive values. To capture this
in our security definitions, we define negligible functions.

1log(x) will always denote the base-2 logarithm of x.

25

Definition 1.1.4. Let ϵ : N → R>0 be a function. We say that ϵ is negligible if, for every
polynomial f(·) there exists an N ∈ N such that for all n > N , we have ϵ(n) < 1

f(n) .

As we see in later sections, we say a scheme is secure (with respect to a security property sec)
if the probability of an adversary A winning the corresponding game Gamesec

A is bounded above by
a negligible function ϵ(λ).

Similarly, we will say that a problem is hard if there is no polynomial time algorithm in λ that
solves the problem. In public-key cryptography, we build new cryptosystems whose security is tied
to the hardness of such problems. For example, if there is an efficient attack against the discrete
logarithm problem in (large) finite fields, the Diffie–Hellman key exchange [136] would no longer
be secure.

1.1.2 Cryptographic hash functions

A fundamental primitive in modern cryptography is a cryptographic hash function. We follow Mit-
telbach and Fischlin [240] and Rogaway and Shrimpton [274].

A (keyed) hash function is a function H : K ×M → Y, where K and Y are finite nonempty
sets and M and Y are sets of strings. We insist that Y = {0, 1}ℓ for some ℓ > 0. The number
ℓ is called the hash length of H. Furthermore, we insist that if m ∈ M, then {0, 1}|m| ⊆ M;
as stated by Rogaway and Shrimpton [274, §2], this assumption is convenient, and a reasonable
hash function should satisfy this. We usually write the first argument to H as a subscript so that
Hk(m) = H(k,m) for all m ∈M.
To obtain a cryptographic hash function, we give formal definitions of two notions of security.
Firstly, in cryptography we will want our hash functions to yield few collisions, where a collision
is a pair of inputs m ̸= m′ such that Hk(m) = Hk(m′).

Definition 1.1.5. Let λ be the security parameter. A hash function H : K × M → {0, 1}ℓ is
collision resistant if for any PPT adversary A we have P (Gamecoll

A) ≤ ϵ(λ), where ϵ : N → [0, 1] is
a negligible function and Gamecoll

A is defined as follows:

Main Gamecoll
A (λ)

k
$←− K

m,m′ $←− A(1λ, k).

return (m ̸= m′) ∧ (Hk(m) = Hk(m′))

The next security definition ensures that it is infeasible for an adversary to efficiently compute a
preimage of the hash function.

Definition 1.1.6. Let λ be the security parameter and consider a hash function H : K ×M →
{0, 1}ℓ and suppose n > 0 is such that {0, 1}n ⊆ M. We say H is preimage resistant if for any
PPT adversary A we have P (Gamepre

A) ≤ ϵ(λ), where ϵ : N → [0, 1] is a negligible function and
Gamepre

A is defined as follows:

Main Gamepre
A (λ)

26

k
$←− K

m
$←− {0, 1}n

y ← Hk(m)

m′ $←− A(1λ, k, y).

return Hk(m′) = y

Given these two security definitions, we are ready to define cryptographic hash functions.

Definition 1.1.7. Let λ be the security parameter. A cryptographic hash function is a hash
function H : K ×M→ {0, 1}ℓ(λ) that is collision resistant and preimage resistant.

For some applications it suffices to rely on a security requirement that is weaker than collision
resistance. We say that a hash function H is second-preimage resistance if, for k $←− K and m

$←−
{0, 1}n ⊆M with y := Hk(m), it is infeasible for any PPT adversary A to find m′ ̸= m such that
y = Hk(m′). If H is collision resistant, then it is also second-preimage resistant.

Remark 1.1.8. For simplicity, we usually consider unkeyed hash functions, which can be modeled
as a keyed hash function with a single fixed key k that is known to everyone.

1.1.3 Identification schemes

In this section, we recall the standard cryptographic notions of Σ-protocols and identification
schemes following the lecture notes by Damgård [113] and Venturi [315]. This will prove most
important for Section 5.2 of Chapter 5, where we define the isogeny-based signature scheme SQIsign
constructed from an identification protocol. Another good general reference for an interested reader
is Chapter 8 by Katz [200].

1.1.3.1 Σ-Protocols

Let R : {0, 1}∗×{0, 1}∗ → {0, 1} be a relation defining a language LR := {x : ∃w s.t. R(x,w) = 1}.
We consider protocols between a prover P and a verifier V, both modelled as PPT algorithms with
respect to the security parameter λ. The prover holds a witness w for a value x ∈ L, and their
goal is to convince the verifier of this through an interactive protocol. We can view x to be an
instance of some computational problem, and w is a solution to that instance. We restrict to
3-move interactive protocols of the following form:

1. P sends a message a.

2. V sends a random t-bit string b.

3. P sends a reply c, and V outputs accept or reject.

This interaction will yield a transcript (a, b, c) where a is the commitment, b is the challenge,
and c is the response. Intuitively, the role of the commitment step is to bind the prover to some
information at the beginning of interaction to ensure that they behave correctly in the response
phase. In the challenge phase, the verifier sends a random string that the prover should not be

27

able to anticipate. We denote such 3-move interactive protocols between prover and verifier by
P(x,w) ⇋ V(x).

Definition 1.1.9. A protocol is said to be a Σ-protocol for a relation R if it is of the above 3-move
form. We say that a Σ-protocol is:

• (1− δ)-Correct if for all x ∈ LR we have that π = (P(x,w) ⇋ V(x)) is a valid transcript with
probability 1− δ (over the randomness of all involved algorithms) for R(x,w) = 1. If δ = 0,
then the Σ-protocol is said to be perfectly correct.

• Special sound if on input x ∈ LR, and any pair of accepting transcripts π = (a, b, c) and
π′ = (a, b′, c′) with b ̸= b′, we can efficiently compute w such that R(x,w) = 1.

• (Computationally) Honest verifier zero-knowledge if there exists an efficient simulator S,
which on input x ∈ LR and b

$←− {0, 1}t, outputs an accepting transcript π = (a, b, c) that
are (computationally) indistinguishable from transcripts of the real protocol.

The special soundness property implies that a Σ-protocol for relation R is always an interactive
proof system for the language LR with soundness error 2−t.

1.1.3.2 Identification schemes

An identification scheme is an interactive protocol between a prover P and a verifier V, where the
prover aims to convince the verifier that it knows some secret without revealing anything about it.

Definition 1.1.10. An identification (ID) scheme is a tuple of PPT algorithms (Gen,P,V) specified
as follows:

• (pk, sk) $←− Gen(1λ): Takes as input the security parameter λ and outputs a key pair (pk, sk).

• π = (P(pk, sk) ⇋ V(pk)): Denotes an interactive protocol, where P holds the key pair (pk, sk)
and V holds pk, at the end of which a transcript π is output.

• The verifier V outputs accept if π is valid, or reject otherwise.

We say that the ID scheme is correct if the verifier outputs accept with probability 1 over the
choice of (pk, sk) $←− Gen(1λ) and over the randomness in the involved algorithms.

The most basic form of security for ID schemes is passive security. It aims to capture the notion
that it should be hard for a dishonest prover to convince the verifier that they know the secret
key corresponding to a particular public key. Passive security will be sufficient for our purposes of
constructing a signature scheme.

Definition 1.1.11. We say (Gen, P, V) is a passively secure ID scheme if, for all PPT adversaries
A there exists a negligible function ϵ : N → [0, 1] such that P (Gameid

A) ≤ ϵ(λ) where Gameid
A is

defined as follows:

Main Gameid
A(λ)

Q← ∅

28

(pk, sk) $←− Gen(1λ)

s
$←− ATranscript(1λ, pk)

π ← (A(s) ⇋ V(pk))

return (π valid) ∧ (#Q = O(poly(λ))) ∧ (π /∈ Q)

Transcript()

πi ← P(pk, sk) ⇋ V(pk)

Q← Q ∪ {πi}

return πi

An ID scheme can be constructed from a Σ-protocol for a hard relation R.

Definition 1.1.12. A relation R is said to be hard if there exists a PPT algorithm Gen that, on
input of the security parameter λ ∈ N, will output a pair (x,w) such that R(x,w) = 1, and for
all PPT adversaries A we have P (Gamehard

A) ≤ ϵ(λ), for a negligible function ϵ : N → [0, 1]. Here,
Gamehard

A is defined as follows:

Main Gameid
A(λ)

(x,w)
$←− Gen(1λ)

w′ $←− A(1λ, x)

return R(x,w′) = 1

The idea to obtain an ID scheme from a Σ-protocol of such a relation R is to generate a pair
(x,w) ← Gen(1λ) and to define pk := x and sk := w. The execution of the scheme then proceeds
as the underlying Σ-protocol. More formally, we have the following theorem, whose proof can be
found in, for example, the lecture notes by Venturi [315, Theorem 5].

Theorem 1.1.13. Let (P,V) be a Σ-protocol for a hard relation R with challenge space of size
ω(log λ). Then (P,V) is a passively secure ID scheme.

1.1.4 Signature schemes from the Fiat–Shamir transform

We now exhibit an important application of identification schemes, namely the construction of
provably secure signature schemes in the random oracle model using the Fiat–Shamir transform.
In the random oracle model, we assume there is a publicly-accessible oracle that implements a
completely random function, usually instantiated with a cryptographic hash function. A deep
understanding of the random oracle model will not be needed for this work; indeed, we will only
use it in this section to understand the construction of SQIsign, an isogeny-based signature scheme
introduced in Section 5.2. We refer to Bellare and Rogaway [20] for more details.

First, we define digital signatures and the security properties we require them to have.

Definition 1.1.14. A signature scheme Π = (KGen, Sign,Verify) is composed of the triple of
polynomial time algorithms defined as follows:

29

• (vk, sk) $←− KGen(1λ): The key generation algorithm takes as input the security parameter
λ ∈ N, and outputs a key pair (vk, sk) composed of the public verification key vk and private
signing key sk.

• σ
$←− Sign(sk,m): The signing algorithm takes as input the signing key sk and a message

m ∈ {0, 1}∗ (and random coins), and returns a signature σ.

• accept/reject← Verify(vk, σ,m) : The verification algorithm takes as input the verification
key vk, the message m and the signature σ, and outputs accept or reject. We often depict
accept by 1 and reject by 0.

We say that the signature scheme Π is correct if for all m ∈ {0, 1}∗ and all (vk, sk) $←− KGen(1λ),
we have Verify(vk,m,Sign(sk,m)) = 1 with probability 1 over the choice of (vk, sk) $←− Gen(1λ) and
over the randomness of all involved algorithms.

For security, we require that, given polynomially many valid signatures and (chosen) message
pairs, it should be hard to forge a signature on a new message.

Definition 1.1.15. We say that a signature scheme Π = (KGen, Sign,Verify) is unforgeable against
chosen-message attacks (UF-CMA) if for all PPT adversaries A there exists a negligible function
ϵ : N→ [0, 1] such that P (GameUF-CMA

A) ≤ ϵ(λ) in the following game:

Main GameUF-CMA
A,Π (λ)

Q← ∅

(vk, sk) $←− KGen(1λ)

(m,σ)
$←− ASign(1λ, pk)

return (Verify(vk, σ,m)) ∧ (m /∈ Q)

Sign(m)

σ ← Sign(sk,m)

Q← Q ∪ {m}

return σ

1.1.4.1 The Fiat–Shamir transform

The Fiat–Shamir transform [151] allows us to construct a signature scheme from a Σ-protocol for
any hard relation R, or equivalently from a passively secure ID scheme. The intuitive idea of the
transformation is to replace the challenge sampled by the verifier by the output of a cryptographic
hash function, which takes as input the commitment a and message m. This is sufficient to ensure
that the prover does not have access to the challenge before generating the commitment, and binds
the commitment to the message that will be signed in that session. More formally, we construct
the signature scheme Π as follows:

• (vk, sk) $←− KGen(1λ): The key generation algorithm fixes a hash function H : {0, 1}∗ →
{0, 1}∗, runs the generation protocol (x,w) ← Gen(1λ) of the underlying ID scheme where
(x,w) ∈ LR, and outputs verification key vk := (H, x) and signing key sk := (w,H, x).

30

• σ
$←− Sign(sk,m): The signing algorithm performs a run of the underlying Σ-protocol by

parsing sk as (w,H, x), computing the challenge b = H(x,m, a), and returns σ := (a, c) as a
signature on m, where a is the commitment and c is the response (see Section 1.1.3.1).

• accept/reject ← Verify(vk, σ,m): The verification algorithm parses vk as (H, x) and σ as
(a, c), computes b′ = H(x,m, a), and returns accept (or 1) if (a, b′, c) is a valid transcript,
and reject (or 0) otherwise.

Fiat and Shamir [151] showed that this construction gives a secure signature scheme (in the sense
of Definition 1.1.15), leading to the following theorem. See, for example Venturi [315, Theorem 7],
for a proof.

Theorem 1.1.16. Let (P,V) be a 3-round passively secure ID scheme, such that the first message a
has conditional min-entropy2 ω(log λ) given the public key pk. Then, the signature scheme derived
by applying the Fiat–Shamir transform is UF-CMA secure in the random oracle model.

Remark 1.1.17. With a view to the work presented in this thesis, all signature schemes are
constructed from identification protocols. As a result, we will make heavy use of Theorem 1.1.16.
As we are also interested in security against quantum adversaries, it is natural to seek an extension
of the Fiat–Shamir transform that is secure in the Quantum Random Oracle Model (QROM), a
quantum version of the random oracle model introduced by Boneh, Dagdelen, Fischlin, Lehmann,
Schaffner, and Zhandry [39]. Unruh [313] proposed an adaptation of the Fiat–Shamir transform
that is secure in the QROM. However, Unruh’s transform is expensive.

1.2 Mathematical preliminaries

The purpose of this section is to point to references for mathematical concepts that may not be
known to a more general audience, but will be assumed throughout the thesis.

Rings. We refer to Artin [6, Chapter 11], or Cohn [85] for a complete description of ring theory.
Most pertinent to this thesis is the definition of the characteristic of a ring [85, §6.3], integral
domains (namely non-zero commutative rings such that product of any two non-zero elements is
non-zero) [6, §11.7], and the following two examples of rings.

Example 1.2.1. We briefly fix notation for two types of rings that we will need for Chapter 3:
division rings and matrix rings.

• A division ring is a non-trivial ring in which division by non-zero elements is defined. In
particular, for every non-zero element a, there exists a multiplicative inverse a−1 such that
a · a−1 = a−1 · a = 1. In Chapter 3, we introduce an example of a division ring: quaternion
algebras over Q.

• A matrix ring is a set of matrices with entries in a ring R that form a ring under matrix
addition and matrix multiplication. For example, 2 × 2 matrices with entries in the real
numbers R, denoted M2(R), is a matrix ring.

2If P = (p1, . . . , pn) is a finite probability distribution, its min-entropy is defined as log(1/pmax) where pmax =
maxi(pi). It is the most conservative way of measuring the unpredictability of a set of outcomes.

31

A reader should also be familiar with polynomial rings as defined in [6, §11.2], and ideals in
such rings [6, Definition 11.3.13].

Fields. A field k is a commutative division ring. Field theory is a vast topic and good references
for this topic are Cameron [63] or Milne [238]. For the work in this thesis, a reader should be
familiar with the field of fractions (or quotient field) corresponding to an integral domain [63,
§2.14] and field extensions [297, §4.1]. An important field extension is the algebraic closure of k,
denoted k, as defined in Milne [238, Chapter 6]. We will often use properties of field extensions,
including their degree [238, pg. 14], their transcendental degree [238, Chapter 9] and whether they
are separable or (purely) inseparable [238, Chapter 3]. Furthermore, in Chapters 7 and 10 we work
with the trace and norm map of a field extension, as defined by, for example, Milne [238, pg. 82].
We briefly detail three examples of fields that are used in this work.

Example 1.2.2 (Finite Fields). In cryptography, the main example of a field that we work with
is a finite field. A field is said to finite if it has finite cardinality. If k is a finite field, then it has
prime characteristic p and has order pk for some k ∈ N. In fact, all finite fields with characteristic
p and order pk are isomorphic. We can therefore identify all finite fields with the same order pk,
and denote them by Fpk . A finite field is an example of a perfect field. We define k to be perfect
if every finite extension of k is separable [238, pg. 33]. Another example of a perfect field is the
rational numbers Q.

Example 1.2.3 (The p-adic numbers). For our discussion on quaternion algebras defined over Q
in Section 3.1, it will be important to study the behaviour at particular primes p. This means that
we study what our quaternion algebra looks like when it is defined over the p-adic numbers Qp. A
p-adic number a ∈ Qp is given by the series

a =

∞∑
i=k

aip
i = akp

k + ak+1p
k+1 + · · · ,

where k is a (possibly negative) integer and 0 ≤ ai < p. For more details, see [45, Chapter 1, §3].

Example 1.2.4 (Quadratic Fields). Quadratic fields have found many applications in isogeny-
based cryptography, particularly when working with ordinary elliptic curves defined over Fp or
supersingular elliptic curves defined over Fp, both of which will be introduced in Section 2.9. In
this manuscript, however, we focus on supersingular curves defined over Fp2 , the reasons for which
will be explained in Section 4.1. As such, we do not explicitly require in-depth knowledge on
quadratic fields. We define them here briefly for completeness; for more details we refer the reader
to Buell [61].

A quadratic field is given by Q(
√
d) for some (uniquely defined) square-free integer d ̸= 0. If

d > 0, Q(
√
d) is a real quadratic field, and when d > 0 it is an imaginary quadratic field. In

cryptography, we mostly work with the latter case.
The ring of integers Ok of a quadratic field k is the ring of all algebraic integers in k (i.e., field

elements that are roots of monic polynomials with integer coefficients). Explicitly, for k = Q(
√
d),

we have Ok is Z
[
1+

√
d

2

]
for d ≡ 1 mod 4, and Z[

√
d] otherwise. For example, when k = Q(

√
−5)

we have Ok = Z[
√
−5].

32

The class group of a quadratic field is a widely studied object both in mathematics and cryp-
tography. To define it, we first introduce fractional ideals. An ideal I in the ring Ok is a subset of
Ok such that: (a) I is subgroup of the additive group of Ok; and (b) for all x ∈ I and r ∈ Ok, we
have rx ∈ I. An ideal I is a fractional ideal if there exists a fixed algebraic integer α ∈ Ok such
that for every x ∈ I, we have αx ∈ Ok. An ideal I is principal if there exists an algebraic integer
α such that I = {rα : r ∈ Ok}. We can define the product ideal IJ of I and J to be the ideal
containing all finite sums of products

∑
xiyi for xi ∈ I, yi ∈ J . In fact, the set of fractional ideals

forms a group Jk under ideal multiplication, and the set of principal ideals Pk ⊆ Jk is a subgroup.
The class group of k is the quotient group Jk/Pk. The order of the group, which is finite, is

called the class number of k.

Galois Theory. In Chapter 2, we define our objects over the algebraic closure k of a field k.
However, it is important to understand when they are defined over the base field k. To define this
formally, we must work with Galois groups of the form Gal(k/k). For a reader unfamiliar with
Galois theory, the book by Stewart [297] gives a very readable introduction to the topic. The case
where k = Fq is particularly simple. However, for the purposes of the work in this thesis, it suffices
to understand the explicit examples that we give in Sections 2.2 and 2.3, for which the question of
whether it is defined over k becomes clearer.

Modules. A module is an analogue of a vector space, where the scalar field is replaced by a ring.
A reader should be familiar with the definition of a (sub)module, given for example by Artin [6,
§14.1].

33

Chapter 2

Abelian Varieties of Low Dimension

This chapter is dedicated to introducing the geometric objects that we study in this work: princi-
pally polarised abelian varieties of dimension 1 and 2. We begin by defining affine and projective
curves, and present our two examples of interest: elliptic curves and hyperelliptic curves of genus
2. Further to this, we show how to associate a group to such curves using the construction of the
Picard group. This will form our first examples of principally polarised abelian varieties, the main
object of study in this thesis. As we will see in this chapter, an abelian variety is a projective alge-
braic variety that is also an algebraic group. The group structure of these objects is what enables
their use in cryptography. For instance, by looking at specific examples of abelian varieties over
finite fields, we can instantiate a group where the discrete logarithm problem is hard. We focus in
particular on principally polarised abelian varieties of dimension 1 and 2, fully categorising all such
varieties and detailing specific properties they hold. With our goal of isogeny-based cryptography
in mind, we define isogenies between abelian varieties, namely a morphism with special properties
which preserve the group structure. We finish by specialising our discussions to abelian varieties
defined over a finite field. As we span many topics throughout this chapter, we indicate the relevant
literature at the beginning of each section.

For a reader unfamiliar with the mathematical background, we refer to Section 1.2, which gives
references for undefined terms in this chapter. For simplicity, we let k be a perfect field and fix an
algebraic closure k of k.

2.1 Curves

In this section, we give a brief introduction to curves with their cryptographic applications in mind.
We begin by giving a general description of affine and projective varieties, before specialising to
those that define algebraic curves. We then introduce the Picard group associated to such a
curve, which allows us to construct a group corresponding to any (smooth, irreducible) curve. We
emphasize that the most important takeaways of this section are the two concrete examples of
algebraic curves that we give in Section 2.2 and Section 2.3, namely (hyper)elliptic curves.

2.1.1 Affine and projective varieties

We first describe affine and projective varieties via the theory of algebraic sets. We show how
to define a geometric object in affine or projective space as the vanishing set of multivariate
polynomials. We refer to [164, 264, 292] for general references for this section.

34

2.1.1.1 Affine varieties

For a positive integer n and field k with algebraic closure k, we define affine n-space An(k) to be
the set of n-tuples

An = An(k) := {P = (x1, . . . , xn) : xi ∈ k}.

In particular, A1(k) = k is the affine line, and A2(k) is the affine plane. The set of k-rational
points of An is the set

An(k) := {P = (x1, . . . , xn) ∈ An : xi ∈ k}.

Remark 2.1.1. Let Gal(k/k) be the (absolute) Galois group of the extension k/k. Then Gal(k/k)
acts on An as follows. For σ ∈ Gal(k/k) and P = (x1, . . . , xn) ∈ An, we define σ(P) :=

(σ(x1), . . . , σ(xn)). The set An(k) can instead be characterised by

An(k) = {P ∈ An : σ(P) = P for all σ ∈ Gal(k/k)}.

For a polynomial f ∈ k[X1, . . . , Xn], a point P = (x1, . . . , xn) ∈ An(k) is called a zero of f
if f(P) = f(x1, . . . , xn) = 0. We are interested in the algebraic sets defined by the vanishing of
polynomials f ∈ k[X1, . . . , Xn].

Definition 2.1.2. Let k[X1, . . . , Xn] be a polynomial ring in n variables, and let I ⊂ k[X1, . . . , Xn]

be an ideal. An affine algebraic set is any set of the form

V (I) = {P ∈ An : f(P) = 0 for all f ∈ I}.

Similarly, if V is an affine algebraic set, the ideal of V , denoted I(V) is generated by

{f ∈ k[X1, . . . , Xn] : f(P) = 0 for all P ∈ V }.

An affine algebraic set V is defined over k if it can be generated by polynomials in k[X1, . . . , Xn].
In this case, the set of k-rational points of V is given by the set V (k) = V ∩ An(k).

Definition 2.1.3. An (irreducible) affine variety is an affine algebraic set V for which I(V) is a
prime ideal in k[X1, . . . , Xn].

Remark 2.1.4. For an affine variety V , when I(V) = (f) for f ∈ k[X1, . . . , Xn], then I(V) is a
prime (and therefore V is irreducible) if f is irreducible over k (see, for example, [164, Example
4.15(ii)]).

Example 2.1.5. Consider f = y2 − x3 − 17 ∈ F5[x, y] defining an ideal I = (f). Viewing f as a
polynomial over F5[x], f is irreducible and so I is a prime ideal. The algebraic set V corresponding
to I is an affine variety given by the single equation y2 = x3 +17. The F5-rational points of V are

V (F5) = {(2, 0), (3, 2), (3, 3), (4, 1), (4, 4)}.

To define the dimension of an affine variety V , we need to construct the function field of V .
Consider the ring

k[V] = k[X1, . . . , Xn]/I(V).

35

As I(V) is prime, k[V] is an integral domain. The function field of V is the quotient field (or field
of fractions) k(V) of the integral domain k[V].

Definition 2.1.6. Let V be a variety. The dimension of V , denoted dim(V), is the transcendence
degree of k(V) over k.

For a variety V defined over k, we can similarly define k[V] and k(V). They are the subsets of
k[V] and k(V), respectively, that are fixed by Gal(k/k).

Example 2.1.5 (continuing from p. 35). The dimension of An is n as k(An) = k(X1, . . . , Xn).
The affine variety V defined by y2 = x3 + 17 has function field

F5(V) = F5[x, y]/(y
2 − x3 − 17),

and dim(V) = 1. More generally, if V ⊂ An is given by a single non-constant polynomial equation
f(X1, . . . , Xn) = 0, then dim(V) = n− 1 [292, Example I.1.4].

2.1.1.2 Projective varieties

Let P = (x0, . . . , xn) ∈ An+1(k) be a point in affine (n+1)-space. If P ̸= (0, . . . , 0), then it defines
a unique line passing through P and (0, . . . , 0). Rather than considering all non-zero points on this
line distinct, we can identify them. Using this identification, we can define (weighted) projective
n-space.

Definition 2.1.7. We define projective n-space to be the set

Pn = Pn(k) :=
{
(x0 : x1 : · · ·xn) : xi ∈ k with

∏
xi ̸= 0

}/
∼,

where ∼ is the equivalence relation:

(x0 : x1 : · · · : xn) ∼ (y0 : y1 : · · · : yn) ⇐⇒ (y0 : y1 : · · · : yn) = (λx0 : λx1 : · · · : λxn),

for some non-zero λ ∈ k×. The set of k-rational points in Pn(k) is defined as

P(k) := {(x0 : x1 : · · · : xn) ∈ Pn : xi ∈ k for all i} ⊆ Pn(k).

Example 2.1.8. When n = 0, the zero-dimensional projective space P0(k) is a single point. When
n = 1, we have

P1(k) := {(x0 : x1) : x0 or x1 ̸= 0}/ ∼ = {(1 : x) : x ∈ k} ∪ {(0 : 1)},

which is the projective line: an affine line with one extra point (0 : 1), often called the point at
infinity.

Remark 2.1.9. The Galois group Gal(k/k) acts on Pn by acting on the projective coordinates.
For P = (x0 : · · · : xn) ∈ Pn we have σ ((x0 : · · · : xn)) := (σ(x0) : · · · : σ(xn)). This action is
well-defined:

σ ((λx0 : · · · : λxn)) = (σ(λ)σ(x0) : · · · : σ(λ)σ(xn)) = (σ(x0) : · · · : σ(xn)).

36

Therefore, we can characterise the set of k-rational points in Pn as Pn(k) = {P ∈ Pn : σ(P) =

P for all σ ∈ Gal(k/k)}.

Definition 2.1.10. We define n-dimensional weighted projective space with pairwise coprime
weights ω0, . . . , ωn to be the set

P(ω0, . . . , ωn)(k) := {(x0 : x1 : · · · : xn) | xi ∈ k, not all xi ̸= 0}/ ∼,

where ∼ is the following equivalence relation:

(x0 : x1 : · · · : xn) ∼ (y0 : y1 : · · · : yn) ⇐⇒ (y0 : y1 : · · · : yn) = (λω0x0 : λ
ω1x1 : · · · : λωnxn),

for some non-zero λ ∈ k. We can define the set of k-rational points in P(ω0, . . . , ωn)(k) analogously
to in Definition 2.1.7.

It will be important to note that affine n-space An can be embedded into projective n-space Pn

via
An ↪→ Pn, (x1, . . . , xn) 7→ (x1 : . . . : xn : 1).

By considering subsets of Pn, we can define maps in the converse direction. Namely, let Ui :=
{(x0 : · · · : xn) ∈ Pn | xi ̸= 0}. The map ϕi : Ui → An, defined as

(x0 : x1 : · · · : xn) 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
,

is a bijection. Fixing the index i, we often identify An as the subset Ui ⊂ Pn under this bijection.
To define projective algebraic sets, we instead consider homogeneous polynomials, i.e., poly-

nomials F ∈ k[X0, . . . , Xn] such that F (λX0, . . . , λXn) = λdF (X0, . . . , Xn) for all λ ∈ k, where
d = deg(F). This ensures that, if F (P) = 0 for some P ∈ Pn(k), then every projective representa-
tive of that point is a zero of F as well.

Definition 2.1.11. Let I be a homogeneous ideal of k[X0, . . . , Xn]. A projective algebraic set is
a set

V (I) := {P ∈ Pn : F (P) = 0 for all homogeneous F ∈ I}.

For a projective algebraic set V , the homogeneous ideal of V is the ideal I(V) of k[X0, . . . , Xn]

generated by

{F ∈ k[X0, . . . , Xn] : F homogeneous and F (P) = 0 for all P ∈ V }.

Remark 2.1.12 (Zariski Topology). Affine and projective spaces are equipped with the structure
of a topological space via the Zariski topology. The closed subsets of affine (resp. projective)
n-space are affine (resp. projective) algebraic sets. Therefore, the Zariski topology on An or Pn

induces a topology on any affine or projective algebraic set, respectively. For more details, we refer
to [264, §3].

37

Definition 2.1.13. An (irreducible) projective variety is a projective algebraic set V such that
the homogeneous ideal I(V) is a prime ideal in k[X1, . . . , Xn]. Similarly to the affine case, we
say that a projective algebraic variety V is defined over k if it can be generated by homogeneous
polynomials F ∈ k[X0, . . . , Xn]. Then, the set of k-rational points of V is the set V (k) = V ∩Pn(k).

Remark 2.1.14. As for the affine case (see Remark 2.1.4), for a projective variety V , when I(V)

is generated by a single homogeneous polynomial F ∈ k[X1, . . . , Xn], then I(V) is a prime ideal if
F is irreducible over k.

Throughout this thesis, we want to work in both affine and projective space. To move from
projective space to affine space, we have to make a choice of affine patch, which means we have to
choose a bijection Ui ←→ An. We follow the usual convention and take Un (i.e., xn ̸= 0) always.
This is formalised in the following definition.

Definition 2.1.15. Let F ∈ k[X0, . . . , Xn] be a homogeneous polynomial. We define the deho-
mogenization FH of F to be

FH(X1, . . . , Xn) := F (X1, . . . , Xn, 1).

Conversely, given f ∈ k[X1, . . . , Xn] of degree d we define the homogenization fH of f to be

fH(X0, . . . , Xn) := Xd
nf(X0/Xn, . . . , Xn−1/Xn).

As a result, if V is a projective algebraic set with homogeneous ideal I(V) ⊂ k[X0, . . . , Xn], we
identify V ∩ An with ϕn(V ∩ Un): it is an affine algebraic set with

I(V ∩ An) = {FH : F ∈ I(V)}.

Namely, I(V ∩ An) is the ideal generated by the dehomogenization of homogeneous polynomials
generating I(V). Similarly, the projective closure V of an affine algebraic set V ⊂ An is the
projective algebraic set with

I(V) = {fH : f ∈ I(V)}.

We can now define many properties of projective varieties V in terms of its affine part V ∩An.
Firstly, we define the dimension of V as the dimension of V ∩An. The function field of V , denoted
K(V), is the function field of V ∩ An.

Example 2.1.16. Consider the affine variety V over k defined by the equation y2 = x3− 5x2+x,
with affine coordinates (x, y) ∈ A2. We have dim(V) = 1. The variety V has a projective closure
V given by the image embedding V ↪→ P2 defined by (x, y) 7→ (x : y : 1). The projective variety V
is generated by the equation

Y 2Z = X3 − 5X2Z +XZ2,

and dim(V) = 1. The additional point (0 : 1 : 0) on the projective curve is a distinguished point
called the point at infinity. Such an affine variety V is called an affine curve, and V is a projective
curve. These will be the focus of Section 2.1.3.

38

2.1.2 Maps between varieties

In this section, we briefly look at algebraic maps between varieties. Let us first define morphisms
of affine varieties.

Definition 2.1.17. Let V1 and V2 ⊂ An be affine varieties. We say that a map ϕ : V1 → V2 is a
morphism of affine varieties if ϕ = (ϕ1, . . . , ϕn), where ϕi ∈ k[X1, . . . , Xn] are polynomials, such
that ϕ(P) := (ϕ1(P), . . . , ϕn(P)) ∈ V2 for a point P ∈ V1. If ϕ1, . . . , ϕn ∈ k[X1, . . . , Xn], we say
that ϕ is defined over k.

Defining morphisms of projective varieties requires more care, and we first introduce rational
maps.

Definition 2.1.18. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1 to V2 is
a map ϕ, usually denoted by ϕ : V1 99K V2, of the form

ϕ = (ϕ0 : . . . : ϕn),

where ϕ0, . . . , ϕn ∈ k(V1) have the property that for every point P ∈ V1 at which ϕ0, . . . , ϕn are
all defined, we have

ϕ(P) = (ϕ0(P) : . . . : ϕn(P)) ∈ V2.

We say that ϕ is defined over k if there exists λ ∈ k× such that λϕ0, . . . , λϕn ∈ k(V1). A birational
map from V1 to V2 is a rational map ϕ : V1 99K V2 such that there is a rational map V2 99K V1
inverse to ϕ.

A rational map ϕ = (ϕ0 : · · ·ϕn) : V1 99K V2 is called regular at P ∈ V1 if there exists a function
g ∈ k(V1) such that gϕ0, . . . , gϕn are all defined at P and at least one of gϕ0(P), . . . , gϕn(P) are
non-zero. Note that, for each P , we may need a different function g. Morphisms of projective
varieties are rational maps that are regular at every point.

Definition 2.1.19. Let V1 and V2 ⊂ Pn be projective varieties. A morphism ϕ : V1 → V2 between
V1 and V2 is a rational map that is regular at every point P ∈ V1. The map ϕ is called an
isomorphism if there exists a morphism ψ : V2 → V1 such that ϕ◦ψ and ψ ◦ϕ are identity maps on
V1 and V2, respectively. We say that two varieties V1, V2 are isomorphic over k or k-isomorphic if
there exists an isomorphism defined over k.

Example 2.1.20. For this example, we follow Silverman [292, Examples 2.3, 3.5]. Let V ⊂ P2 be
the projective variety given by the equation

X2 + Y 2 = Z2,

defined over k with characteristic char k ̸= 2. The morphism

P1 −→ V,

(s : t) 7−→ (s2 − t2 : 2st : s2 + t2),

39

has inverse

V −→ P1,

(X : Y : Z) 7−→ (X + Z : Y).

In this way, V and P1 are isomorphic as projective varieties.

2.1.3 Curves

We turn our attention to affine and projective curves. These will be the geometric object of most
interest to us, and is in some sense the simplest type of variety. Indeed, an affine, resp. projective,
curve C is an affine, resp. projective, variety of dimension 1.

As C is an algebraic variety, it has a corresponding ideal I(C) which is generated by polynomials
f1, . . . , fm ∈ k[X1, . . . , Xn] if affine, or homogeneous polynomials F0, . . . , Fm ∈ k[X0, . . . , Xn] if
projective. We say that C is generated by f1, . . . , fm or F0, . . . , Fm, respectively.

Recall that a point P ∈ An lies on the affine curve C ⊂ An if fi(P) = 0 for all i = 1, . . . ,m.
We denote the k-rational points of C, as defined in Section 2.1.1.1, by C(k). We similarly define
the k-rational points of a projective curve C following Section 2.1.1.2.

Definition 2.1.21. Let C be an affine curve generated by f1, . . . , fm ∈ k[X1, . . . , Xn]. A point
P ∈ C is non-singular or smooth if the m× n matrix(

∂fi
∂Xj

(P)

)
1≤i≤m, 1≤j≤n

has rank n− 1. If C is non-singular at every point P , we say that C is non-singular.

Remark 2.1.22. When C is generated by f ∈ k[X1, . . . , Xn], Definition 2.1.21 reduces to C being
non-singular if (

∂f

∂X1
(P), . . . ,

∂f

∂Xn
(P)

)
̸= (0, . . . , 0).

When C is a projective curve we can identify C with the affine part C ∩An. We then define C to
be non-singular (or smooth) at P if C ∩ An is non-singular (or smooth) at P .

Example 2.1.16 (continuing from p. 38). The affine variety defined by f = −y2 + x3 − 5x2 +

x ∈ k[x, y] is an irreducible affine curve C. Let us now explore properties of the curve C. It
is smooth at a point P = (xP , yP) with f(xP , yP) = 0 if and only if the partial derivatives(
∂f
∂y (P),

∂f
∂x (P)

)
̸= (0, 0). As ∂f

∂y = −2y, it is non-zero at P if and only if yP ̸= 0 and char k ̸= 2. If
y = 0, then consider the curve x(x2−5x+1). The quadratic x2−5x+1 has non-zero discriminant
∆ = 21 ∈ k for char k ̸= 3, 7, so in this case it does not have repeated roots in k and ∂f

∂x (P) ̸= 0.
In conclusion, C is a non-singular irreducible affine curve for char k coprime to 2, 3, and 7. In this
case, the projective closure of C defined by Y 2Z = X3− 5X2Z +XZ2 ⊂ P2, is an elliptic curve, a
special type of affine curve that we will define in Section 2.2. It has distinguished point (0 : 1 : 0).

40

2.1.4 The Picard group

Let C be an irreducible non-singular projective curve defined over k. We now introduce the
Picard group Pic0(C) corresponding to C following Silverman [292, Chapter II], which allows us to
associate a group to any projective curve C. This is important within the context of cryptography
as this group structure is essential to instantiate cryptographic protocols. As an example, consider
an elliptic curve E/k with elliptic curve group E(k) used to construct elliptic-curve cryptography.
The Picard group allows us to generalise this construction to a larger family of curves C. We
revisit this example in Section 2.2.

Definition 2.1.23. We define a divisor D to be a formal sum of points P ∈ C, i.e.,

D =
∑
P∈C

nP (P),

where nP ∈ Z and there are only finitely many non-zero constants nP . The support of D is defined
to be the set of points P ∈ C such that nP ̸= 0. We define the degree of D as deg(D) =

∑
P∈C nP ∈

Z.

The set of all divisors Div(C) of a curve C, forms a commutative group with identity
∑
P∈C 0(P),

where the addition is defined pointwise as∑
P∈C

nP (P) +
∑
P∈C

mP (P) =
∑
P∈C

(nP +mP)(P).

The set Div0(C) := {D ∈ Div(C) : deg(D) = 0}, of all divisors of degree 0 forms a subgroup of
Div(C).

Another important type of divisor are those coming from rational functions f on the curve C.
For a rational function f ∈ k(C)×, we can look at the formal sum

div(f) =
∑
P∈C

ordP (f)(P),

where ordP (f) denotes the order of f at P . We have that ordP (f) = a ∈ Z where

a

< 0, if f has a pole of order − a at P,

= 0, if f is non-zero at P,

> 0, if f has a zero of order a at P.

As f only has a finite number of zeros and poles, only finitely many of the ordP (f) are non-zero,
and div(f) is a divisor. Such divisors are called principal divisors. The set of all principal divisors
is noted Prin(C), which forms a subgroup of Div0(C) as principal divisors have degree 0, see [292,
Proposition II.3.1(b)].

Definition 2.1.24. The Picard group of a curve C is defined as the quotient group

Pic0(C) := Div0(C)/Prin(C),

41

namely, Pic0(C) is the group of divisors in Div0(C) up to equivalence, where D1 and D2 are said
to be equivalent if they differ by a principal divisor.

If C is defined over k, then Gal(k/k) acts on Div(C) and Div0(C) by acting on the divisors as

σ(D) =
∑
P∈C

nP (σ(P)),

for σ ∈ Gal(k/k). Then, we say that D is defined over k if σ(D) = D for all σ ∈ Gal(k/k). We let
Pic0k(C) be the subgroup of Pic0(C) fixed by the Galois group Gal(k/k).

Remark 2.1.25. If D = n1(P1) + · · ·nr(Pr) is defined over k, it does not mean that each point
P1, . . . , Pr are defined over k. We demonstrate this through an example. Consider the curve
C : y2 = x6 + 1 of genus 2, defined over F112 = F11(i), where i2 + 1 = 0. Consider the divisor
D = ((i, 0)) + ((−i, 0))− 2(0C) ∈ Div0(C). As each point in the support of D is defined over F112 ,
it suffices to consider the Galois group Gal(F112/F11), rather than Gal(F11/F11). We note that
Gal(F112/F11) is generated by the Frobenius endomorphism π : F112 → F112 mapping x 7→ x11. As

π(D) = (π(i, 0)) + (π(−i, 0))− 2(π(0C)) = ((−i, 0)) + ((i, 0))− 2(0C) = D,

we see that D is defined over F11. However, the points (±i, 0) ∈ C(F112) are not defined over F11.

Example 2.1.16 (continuing from p. 38). Consider the line L : y = ax+ b and the affine curve C
defined by y2 = x3−5x2+x as before. To define divisors, we need to work with the corresponding
projective curve C defined by Y 2Z = X3 − 5X2Z +XZ2 with identity 0C . By Bézout’s theorem
(see [168, §5.3]), a line L intersects C at exactly three points (counting multiplicities). The divisor
div(L) tells us what these points of intersection are. Suppose first that L intersects C at 3 distinct
points P,Q,R ∈ C(k), each with multiplicity 1. Then L also has a pole of order 3 at 0C . Therefore,
we have div(L) = (P) + (Q) + (R)− 3(0C). If instead L intersects C at P with multiplicity 2, and
at a point R with multiplicity 1, we have div(L) = 2(P) + (R) − 3(0C). These lines are precisely
those used in the group law ⊕ in Pic0(C), which is given by point addition on an elliptic curve via
the chord-and-tangent rule, as depicted in Figure 2.2 in Section 2.2. Indeed, in the first case we
have R = −(P ⊕Q), and in the second case R = −[2]P .

2.1.4.1 The genus of curves

The genus of a projective curve is an important invariant and arises as a consequence of the
Riemann–Roch theorem. As before, let C be an irreducible non-singular projective curve defined
over k.

Let D =
∑
P∈C nP (P) ∈ Div(C) be a divisor of C. We say that a divisor is effective if nP ≥ 0

for all P ∈ C. We denote this by D ≥ 0. Then, if D1, D2 ∈ Div(C), we say that D1 ≥ D2 if
D1 −D2 ≥ 0.

Using this notation, we can now describe zeros and poles of a function. For instance, if div(f) ≥
5(P) for f ∈ k(C)×, then we know that f has a zero of at least order 5 at P . Going further, for a

42

divisor D ∈ Div(C) we define:

L(D) := {f ∈ k(C)× | div(f) ≥ −D} ∪ {0}.

L(D) is a finite dimensional k-vector space [298, Lemma 1.4.6, Proposition 1.4.9]. The Riemann–
Roch theorem gives us a bound on the dimension of this vector space, denoted ℓ(D), for every
divisor D.

Theorem 2.1.26 (Riemann–Roch). Let C/k be an irreducible non-singular curve over k. Then,
there exists an integer g ≥ 0 such that for every divisor D ∈ Div(C) we have

ℓ(D) ≥ deg(D)− g + 1.

If deg(D) > 2g − 2 then we have equality.

We are now ready to introduce the two examples of plane curves of most interest to us: elliptic
curves (curves of genus 1) and hyperelliptic curves of genus 2.

2.2 Elliptic curves

We start with the genus-1 case: elliptic curves. For simplicity, we consider k such that the char-
acteristic char k ̸= 2 or 3. As we focus on cryptographic applications where the characteristic
char k is a cryptographic-sized prime, we lose nothing with this simplification. In this section, we
follow Silverman [292].

To define the group associated to an elliptic curve via the construction of the Picard group
in Section 2.1.4, we must look at genus-1 curves that are non-singular and irreducible. We illustrate
the difference between singular and non-singular genus 1 curves in Figure 2.1, best illustrated by
setting k = R.

This leads us to the following definition.

Definition 2.2.1. An elliptic curve E defined over field k is a non-singular, irreducible projective
curve of genus 1 with a distinguished k-rational point 0E .

We consider two models of elliptic curves, corresponding to different shapes of the defining
equation: short Weierstrass and Montgomery models. Weierstrass curves are the most classical
family of elliptic curves, and every elliptic curve can be put in this form. Due to this, the Weierstrass
model is often considered to be the canonical way to represent an elliptic curve. As char k ̸= 2, 3,
the elliptic curve E defined over k can be put in short Weierstrass form.

Definition 2.2.2 (Short Weierstrass Curve). A short Weierstrass curve E defined over k is defined
by the equation

(2.1) E : Y 2Z = X3 + aXZ2 + bZ3,

with a, b ∈ k such that the discriminant ∆ = −16(4a3 + 27b2) ̸= 0. The distinguished point of E
is 0E = (0: 1 : 0).

43

y2 = x3 − 3x+ 3

y2 = x3
y2 = x3 + x2

Figure 2.1: A depiction of singular and non-singular curves defined over R following [292, Figure 3.1-
3.2]. The curve on the left (in blue) y2 = x3 − 3x + 3 is non-singular. The other two curves (in red) are
singular. The curve y2 = x3 is a cusp, as it has one tangent direction at the singular point (0, 0), whereas
y2 = x3 + x2 has two tangent directions at (0, 0) and is called a node.

Montgomery [241] introduced another model of curve that is important in the context of cryp-
tography due to its efficient arithmetic.

Definition 2.2.3 (Montgomery Curve). A Montgomery curve E over k is defined by the equation

(2.2) E : BY 2Z = X(X2 +AXZ + Z2)

with A,B ∈ k such that B ̸= 0 and A2 ̸= 4. The distinguished point of E is given by 0E = (0: 1 : 0).

Recall that we use the map (X,Y, Z) 7→ (x, y) = (X/Z, Y/Z) to obtain the affine model of E.
The equations defining the affine short Weierstrass and Montgomery models are:

E : y2 = x3 + ax+ b and E : By2 = x(x2 +Ax+ 1),

respectively. All points P = (XP : YP : ZP) ∈ E(k) with P ̸= 0E can be mapped to an affine
point (xP , yP) := (XP /ZP , YP /ZP). The point at infinity 0E cannot be represented in these affine
coordinates (as its Z-coordinate is zero).

To associate a group to an elliptic curve E, we turn to the Picard group. In this case, there
exists a bijection of sets Pic0(E) → E [292, Proposition III.3.4]. In fact, Pic0(E) is an abelian
group and this bijection induces a group structure on E. As such, E is an abelian group with
group law given by the addition of points. We often take the identity of the group law to be
0E . Refer to, for example, Frey and Lange [164, p. 13.1.1] for explicit formulæ for the group law
when E is a short Weierstrass curve. This group law has a geometric interpretation given by the
chord-and-tangent rule. We depict this in Figure 2.2 taking k = R for illustrative purposes.

We now give an extended example which will depict properties of elliptic curves and the group
law on a specific Montgomery curve.

44

P

Q

−(P ⊕Q)

P ⊕Q
P

[2]P

Figure 2.2: Chord-and-tangent rule for point addition (on the left) and point doubling (on the right) on
elliptic curves. For illustrative purposes, we take k = R.

Example 2.1.16 (continuing from p. 38). Recall E : y2 = x3− 5x2 +x is an elliptic curve defined
over k when char k ̸= 2, 3, 7. In fact, we can now see that it is an elliptic curve in Montgomery
form with distinguished point 0E := (0 : 1 : 0). To the curve E, we can associate a group of
points E(k) with group law given by the addition of points ⊕ and identity 0E . Consider a point
P = (xP : yP : 1) in E(k). The inverse of P under ⊕ is a point P ′ such that P ⊕ P ′ = 0E .
We find that P ′ = (xP : −yP : 1). We denote the inverse of P by −P . We describe addition of
points in affine coordinates. A discussion of how to obtain efficient projective formulæ is given
in Section 2.2.1. For now, we remark that by using projective formulæ for the group law, we can
avoid all field inversions. Let P = (xP , yP) and Q = (xQ, yQ) ̸= ±P in E(k). Then, R = P ⊕Q is
given by (xR, yR) where

xR := λ2 − (xP + xQ) + 5,

yR := λ(xP − xR)− yP ,

and λ = (yP − yQ)/(xP − xQ). If Q = P , then R = [2]P and

(x[2]P , y[2]P) :=

(
(x2P − 1)2

2xP (x2P − 5xP + 1)
, yP ·

(x2P − 1)(x4P − 10x3P + 6x2P − 10xP + 1)

8x2P (x
2
P − 5xP + 1)

)
.

Otherwise, Q = −P and R = 0E . In this way, we see that the group law is given by rational
functions. To give a concrete example we consider k = F11. Taking P = (2, 1), Q = (5, 4) in
E(F11) we have λ = 1 and R = (1− (2 + 5) + 5, (5− 2)− 1) = (10, 2). Similarly, [2]P = (5, 4).

The Montgomery form of an elliptic curve is special in the following sense.

Proposition 2.2.4 ([250]). A Weierstrass elliptic curve E : y2 = x3 + ax + b defined over k can
be put in Montgomery form if and only if:

45

• The group order #E(k) is divisible by 4,

• x3 + ax+ b has at least one root α ∈ k, and

• 3α2 + a is a quadratic residue in k.

Although not every curve can be put into Montgomery form, it is a popular choice for cryptography
as it is amenable to efficient arithmetic.

2.2.1 x-only arithmetic

Consider a Montgomery elliptic curve EA,B ⊆ P2 defined over k with projective coordinates (X :

Y : Z). The quotient map x : EA,B 7→ EA,B/⟨±1⟩ defined as x(P) = (XP : 1) if P = (XP : YP : 1),
and x(P) = (1 : 0) if P = (0 : 1 : 0). As EA,B/⟨±1⟩ is isomorphic to P1 with most points of
the form (XP : 1), we call it the x-line (or the Kummer line). The quotient map destroys the
group law on EA,B , and as such P1 does not inherit the group structure of EA,B . However, we still
recover a pseudo-group law. We can define a pseudo-addition on P1 by

(x(P),x(Q),x(P ⊖Q)) 7→ x(P ⊕Q),

where we require the knowledge of P ⊖ Q to compute the addition P ⊕ Q. We can also define
pseudo-doubling

x(P) 7→ x([2]P),

where no additional information is needed (compared to the standard doubling formulæ). Fur-
thermore, we compute scalar-multiplication x(P) 7→ x([k]P), for k ∈ Z using, for example, the
Montgomery ladder [241].

For cryptographic applications, the pseudo-operations on the x-line are sufficient. We remark
that we can construct the x-line associated to any elliptic curve E, including those in Weierstrass
form. However, using elliptic curves in Montgomery form gives us very efficient x-line arithmetic.
We refer to Costello and Smith [106, §3] for more details on x-only arithmetic on Montgomery
curves. Regarding isogeny computation, the explicit formulæ given by Costello and Hisil [102] is
the state-of-the-art for evaluating isogenies (of low degree) on Montgomery curves. It is a variation
of Vélu’s formulæ working entirely on the x-line.

2.2.2 Isomorphism classes of elliptic curves

Rather than considering each individual curve, we study them up to k-isomorphism. Namely, we
study equivalence classes of elliptic curves where E and E′ defined over k are equivalent if and
only if they are isomorphic over k. To obtain a representative for each equivalence class, we define
the j-invariant.

Definition 2.2.5 (j-invariant). Consider the short Weierstrass curve E : Y 2Z = X3+aXZ2+bZ3

with a, b ∈ k. The j-invariant is given by

(2.3) j(E) = 1728
4a3

4a3 + 27b2
.

46

When E is a Montogomery curve, i.e., defined as E : BY 2 = X(X2 +AXZ + Z2), we have

(2.4) j(E) =
256(A2 − 3)3

A2 − 4
.

The following proposition tells us that the k-isomorphism class of E is uniquely determined by
the j-invariant, thus giving us a suitable label for the equivalence classes.

Proposition 2.2.6. Two elliptic curves E1, E2 defined over k are isomorphic over k if and only
if j(E1) = j(E2).

Proof. See [292, Proposition III.1.4(b)].

Example 2.2.7. Consider elliptic curves E1 : y
2 = x2 + 16x + 71 and E2 : y

2 = x2 + 7x + 67 in
short Weierstrass form defined over F103. Then j(E1) = j(E2) = 13 and so they are isomorphic
(over F103). Indeed, the isomorphism is given by

ϕ : E1 → E2,

(x, y) 7→ (32x, 23y),

with inverse

ϕ−1 : E2 → E1,

(x, y) 7→ (29x, 9y).

2.2.3 Quadratic twists

Let k be a field of characteristic char k ̸= 2 and let E be an elliptic curve defined over k of the form

E : y2 = x3 + ax2 + bx+ c, a, b, c ∈ k.

Given d ̸= 0 not a square in k, we define the quadratic twist by d of E to be the curve Ed defined
by Ed : dy2 = x3 + ax2 + bx+ c, or equivalently, Ed : y2 = x3 + dax2 + d2bx+ d3c. The curves E
and Ed are not isomorphic over k, but they are isomorphic over k(

√
d) via

ρd : E
∼−→ Ed, (x, y) 7→ (x, y

√
d).

Example 2.2.8. Consider E : y2 = x3 + 60x + 7 defined over F103. The elliptic curve Ed : y2 =

x3 + 68x + 33 is a quadratic twist of E by d = 102. Indeed, E and Ed are not isomorphic over
F103, but they are isomorphic over F1032 = F103(i) where i2 = −1 via the isomomorphism

ϕ : E → Ed, (x, y) 7→ (−x, iy)

For elliptic curves defined over finite fields, the quadratic twist of an elliptic curve E is unique
(up to Fq-isomorphism), as shown by the following proposition. For example, the quadratic twist
Ed of E from Example 2.2.8 above is unique up to F103-isomorphism.

47

Proposition 2.2.9. Let E be an elliptic curve defined over Fq, and d, d′ ̸= 0 be non-squares in
Fq. Then Ed is isomorphic over Fq to Ed

′
.

Proof. As d, d′ are quadratic non-residues in Fq, d′d−1 is a quadratic residue, and so there exists
some α ∈ Fq with α2 = d′d−1. Then the map (x, y) 7→ (x, αy) gives an isomorphism from Ed to
Ed

′
over Fq.

By Proposition 2.2.9, for an elliptic curve E defined over Fq, we denote the (unique) quadratic
twist by Et.

2.3 Hyperelliptic curves of genus 2

We now introduce another example of plane curves: hyperelliptic curves of genus 2. A comprehen-
sive overview of hyperelliptic curves in the context of cryptography can be found in [164, §4.4.2.b]
or [170, Chapter 10].

Definition 2.3.1. A non-singular projective curve C defined over k of genus g is called a hyperel-
liptic curve of genus g if its function field k(C) is separable extension of degree 2 over the rational
function field k(x), i.e., [k(C) : k(x)] = 2.

Following Frey and Lange [164], one can use the Riemann–Roch theorem to find an equation
describing an affine part of C. For the purposes of this thesis, it will be sufficient to characterise
hyperelliptic curves of genus g by their affine part.

Theorem 2.3.2. The function field of a hyperelliptic curve of genus g defined over k with char k ̸=
2 is the function field of an affine curve given by an equation

(2.5) C : y2 = f(x),

where f(x) ∈ k[x] with 2g + 1 ≤ deg(f) ≤ 2g + 2.

Proof. See the proof of [164, Theorem 4.122].

If C has a k-rational Weierstrass point, it is given by an affine curve of the form C : y2 = f(x)

as in Equation (2.5) with deg(f) = 2g + 1. The homogenization of any such curve has a single
point at infinity, denoted∞. If deg(f) = 2g+2, then there are two points at infinity∞− and∞+.

The Weierstrass points of C are precisely the points (wi, 0) where wi is one of the (at most
2g+2) distinct roots of f(x). When deg(f) = 2g+1, we also consider the (single) point at infinity
∞ to be a Weierstrass point.

Remark 2.3.3. The definition of a hyperelliptic curve of genus g as a projective curve with affine
part given by Equation (2.5) in Theorem 2.3.2 means that we can view an elliptic curve as a
hyperelliptic curve of genus 1. From this point onwards, we refer to a hyperelliptic curve of genus
g as given by Theorem 2.3.2, therefore encompassing the elliptic curve case.

For cryptographic applications, we often work with a particular model of hyperelliptic curve
that yields more efficient arithmetic.

48

Definition 2.3.4. A hyperelliptic curve of genus 2 defined over k is in Rosenhain form if it is
given by

Cλ,µ,ν : y
2 = x(x− 1)(x− λ)(x− µ)(x− ν),

where λ, µ, ν ∈ k.

For a genus-2 hyperelliptic curve C : y2 = f(x), if f(x) has all its roots in k, then C is k-
isomorphic to a curve Cλ,µ,ν in Rosenhain form, with isomorphism given by, for example, mapping
one root to 0, one root to 1, and one root to∞, as described in [249, §2.1]. For a curve in Rosenhain
form, the six Weierstrass points are w1 =∞, w2 = 0, w3 = 1, w4 = λ, w5 = µ and w6 = ν.

Unlike in the elliptic curve case, for general hyperelliptic curves of genus g, the points do not
form a group as Pic0(C) ≇ C. Instead, the abelian group Pic0(C) must be considered as a separate
object. In this case, we identify the Picard group with the Jacobian.

Definition 2.3.5. Let C be a hyperelliptic curve. There exists a (unique) non-singular, irreducible
projective variety JC defined over k such that JC(k′) is isomorphic to Pic0k′(C) for all intermediate
fields k ⊆ k′ ⊆ k [239, §1]. The variety JC , also denoted as Jac(C), is called the Jacobian of C.

Throughout this thesis, we work with both the algebraic properties of the Jacobian and the
geometric properties of the underlying hyperelliptic curve. We remark that if C is of genus g, then
JC has dimension equal to g.

For a hyperelliptic curve C of genus g, each divisor class D ∈ JC has a unique representative
of the form

∑r
i=1(Pi) − r(0C), with r ≤ g, and where Pi ̸= 0C for all i = 1, . . . , r and, writing

Pi = (xi, yi), we have (xi, yi) ̸= (xj ,−yj) for all i ̸= j. We call such a representative a reduced
divisor. Mumford [245] introduced a convenient way to represent reduced divisors as D.

Definition 2.3.6. Let C be a hyperelliptic curve of genus 2 with Jacobian JC . LetD =
∑r
i=1(Pi)−

r(0C) ∈ JC be a reduced divisor with Pi = (xi, yi). We say D is in Mumford representation if
D = (u(x), v(x)) where u(x) is a monic polynomial with deg(u(x)) ≤ 2 satisfying u(xi) = 0, and
v(x) with deg(v(x)) < deg(u(x)) such that v(xi) = yi, for 1 ≤ i ≤ r.

Given two reduced divisors D1, D2 in their Mumford representations, Cantor’s algorithm [64]
allows us to compute the reduced divisor D in Mumford representation such that D is equivalent
to D1 + D2. This allows us to perform addition (and scalar multiplication) of divisor classes in
JC using the Mumford representation. We explore the group law on JC through an example; for
a generic exposition of the group law we refer to Lange [213, Chapter 3].

Example 2.3.7. Let C : y2 = x5+36x4+42x3+47x2+63x+10 be a hyperelliptic curve of genus
2 defined over F67 with point at infinity∞. Let JC be the Jacobian corresponding to C. Consider
the points

P1 = (14, 21), P2 = (4, 41), P3 = (46, 27), and P4 = (5, 9),

lying on C. Let D1 = (P1) + (P2) − 2(∞) and D2 = (P3) + (P4) − 2(∞) be divisors in JC . We
would like to compute D1+D2. For D = (P1)+ (P2)+ (P3)+ (P4)− 4(∞) ∈ JC , there is a unique
reduced divisor D̃ equivalent to D of the form D̃ = (Q1) + (Q2)− 2(∞). Then, D̃ = D1 +D2. We
find it in the following way.

49

We first compute the unique cubic function passing through the points P1, P2, P3, P4 to be
f : y = 54x3 + 12x2 + 50x+ 12. The function f intersects C at two more points, namely

P ′
1 = (28, 10) and P ′

2 = (0, 12).

Therefore, we have div(f) = (P1) + (P2) + (P3) + (P4) + (P ′
1) + (P ′

2) − 6(∞) and (P1) + (P2) +

(P3) + (P4)− 4(∞) is equivalent to −(P ′
1)− (P ′

2) + 2(∞). Constructing vertical lines

ℓ1 : x = 28 and ℓ2 : x = 0,

which each intersect C at another point Q1 = (28, 57) and Q2 = (0, 55), respectively. As such,
div(ℓi) = (P ′

i) + (Qi) − 2(∞) for i = 1, 2. Concluding, we have that −(P ′
1) − (P ′

2) + 2(∞) is
equivalent to

−(P ′
1)− (P ′

2) + 2(∞) + div(ℓ1) + div(ℓ2) = (Q1) + (Q2)− 2(∞) = D̃.

Although not evident by this example, we remark the points Q1, and Q2 need not be defined over
F67, but the divisor D̃ will be. For example, Q1 and Q2 can be Galois conjugates as explained
in Remark 2.1.25.

What about Mumford coordinates? Consider first the divisor D1. Let u1(x) = (x−14)(x−4) =
x2 + 49x+ 56, and v1(x) = 65x+ 49, so that v1(14) = 21 and v1(4) = 41. Therefore, in Mumford
coordinates, D1 given by

D1 = (u1(x), v1(x)) = (x2 + 49x+ 56, 65x+ 49).

Similarly, in Mumford coordinates, D2 is

D2 = (u2(x), v2(x)) = (x2 + 16x+ 29, 56x+ 64).

Using Cantor’s algorithm,1 we compute D̃ = D1 +D2 to be (x(x+ 39), 24x+ 55). We verify that
these are the Mumford coordinates of the divisor (Q1) + (Q2) − 2(∞) where Q1 = (28, 57) and
Q2 = (0, 55).

2.4 Abelian varieties

Abelian varieties have both an algebraic structure (as an abelian group), and a geometric structure
(as a smooth projective curve). In previous examples, we have already seen two examples of
abelian varieties: elliptic curves and Jacobians of hyperelliptic curves of genus g. We begin with
a description of abelian varieties of dimension g, before specialising to dimension 1 and 2. For the
discussion on abelian varieties of dimension g we refer to Mumford [244], Lang [212] and Milne
[237].

Definition 2.4.1. An abelian variety A is a projective algebraic variety A defined over k that is
also an algebraic group, i.e., A has a group law ⊕ : A × A → A such that ⊕ and its inverse ⊖

1Cantor’s algorithm is implemented in MAGMA, for example.

50

are morphisms of varieties (as defined in Definition 2.1.19). We denote by 0A the identity of the
abelian variety under this group law.

As shown by Mumford [244, pg. 44], A is an abelian group. We denote by A/k an abelian
variety whose defining equations have coefficients in k, and A(k) denotes the group of points defined
over k in A.

Remark 2.4.2. When clear by context, we often denote the group law morphism ⊕ and its inverse
⊖ simply as + and −, respectively.

Example 2.1.16 (continuing from p. 38). Let E be the projective elliptic curve E : Y 2Z = X3 −
5X2Z +XZ2 with projective coordinates (X : Y : Z) ∈ P2. Letting I = (−Y 2Z −X3 + 5X2Z −
XZ2) be an ideal in k[X,Y, Z], we have that E = V (I). For the elliptic curve E, we saw that the
group law is commutative and given by rational functions at each point on E and with identity
0E = (0 : 1 : 0). In fact, an elliptic curve is an abelian variety of dimension 1.

We only deal with abelian varieties of dimension 1 and 2. Abelian varieties of dimension 1

are precisely elliptic curves. An example of abelian varieties of dimension 2 are Jacobians of
hyperelliptic curves of genus 2. Abelian varieties arising from elliptic curves and hyperelliptic
curves will be the main focus of this thesis.

Remark 2.4.3. In general, we can construct an abelian variety of dimension g by constructing
the Jacobian of any hyperelliptic curve of genus g.

2.4.1 Principally polarised abelian varieties

We briefly discuss principal polarisations and dual abelian varieties. We do not aim for this
discussion to be complete or to give precise definitions, but rather to give some intuition on what
these terms mean within the context of cryptography. We emphasize that for the purposes of this
work, it is sufficient to understand the specific examples of principally polarised abelian varieties
detailed in Sections 2.2 and 2.5.

In Section 2.1.4 we defined the Picard group associated to a curve C. We can also define
divisors on an abelian variety and the Picard group Pic0(A). We define the dual abelian variety
Â to be Pic0(A). Returning to our primary example of an abelian variety, every elliptic curve E
is isomorphic to its dual Ê. However, this fails for higher dimensional abelian varieties, and the
concept of a dual therefore becomes more interesting. For our purposes, however, we would like to
work only with abelian varieties A that are isomorphic to their dual Â. For this reason, we omit
a precise definition of the dual Â; such a definition would require introducing heavy machinery
from algebraic geometry, and it will not be necessary for the purposes of this thesis. For interested
readers, a general definition of the dual abelian variety is given by Milne [237, §9].

Definition 2.4.4. We say that (A, λ) is a principally polarised (p.p.) abelian variety if A is an
abelian variety and λ : A→ Â is an isomorphism.

By working with principally polarised (p.p.) abelian varieties (A, λ), we ensure that A ∼= Â.
In cryptography, we often take for granted that we have equations defining our elliptic curves

in projective space. The existence of coordinates and equations for an elliptic curve E arise from

51

the fact that an elliptic curve has a canonical principal polarisation (i.e., a canonical isomorphism
E ∼= Ê). We remark that this is not always the case: some abelian varieties A have no principal
polarisation [183], and others have more than one (so we need to be careful with our choice).
Reassuringly, the abelian varieties constructed from hyperelliptic curves in Section 2.3 also have a
canonical principal polarisation [239, Summary 6.11]. The following example of a polarisation will
also be important.

Example 2.4.5. Consider the (Cartesian) product E1 × E2 of (p.p.) elliptic curves (E1, λ1) and
(E2, λ2) defined over k. Points on E1 × E2 are given as tuples (P1, P2) where P1 ∈ E1(k) and
P2 ∈ E2(k), and

(P1, P2)⊕ (Q1, Q2) := (P1 ⊕Q1, P2 ⊕Q2),

where (P1, P2), (Q1, Q2) ∈ (E1 × E2)(k). The polarisation on E1 × E2 is given by the product
polarisation λ1 × λ2, which gives an isomorphism λ1 × λ2 : E1 × E2

∼−→ Ê1 × Ê2, and is thus a
principal polarisation. We remark, however, that this is not the only polarisation.

When the choice of principal polarisation λ is clear (for example, when there is a canonical
choice), we denote the p.p. abelian variety (A, λ) by A.

2.5 Abelian surfaces

Every abelian variety of dimension 1 is an elliptic curve, and so every dimension-1 abelian variety
has a (canonical) principal polarisation. In dimension 2, we work with p.p. abelian surfaces. Over
an algebraically closed field k, there are only two types of p.p. abelian surfaces (see [256] or [177,
Theorem 3.1]):

1. The Jacobian JC of a hyperelliptic curve C of genus 2; or

2. A product of two elliptic curves E1 × E2 with the product polarisation described in Exam-
ple 2.4.5.

Over a field k, another type of p.p. abelian surface appears: the Weil restriction of an elliptic
curve, but this will not be relevant to the work in this thesis.

2.5.1 Kummer surfaces

Kummer surfaces are the natural analogue of the x-line defined in Section 2.2.1 in dimension
2. As they have more efficient arithmetic than the corresponding Jacobian, they are preferred
for constructive cryptographic applications. In Chapter 9, we use Kummer surfaces to construct
efficient two-dimensional isogenies.

The Kummer surface K of the Jacobian JC of a genus-2 curve C is the quotient JC/{±1}.
The quotient map π : JC → K sends a divisor DP ∈ JC to a point P on the Kummer surface K.
Unlike the x-line which involves working with one coordinate in P1, the Kummer surface is a more
complicated object. Geometrically, it has a quartic model in P3 with sixteen point singularities,
called nodes. This means that K has coordinates (X1 : X2 : X3 : X4) ∈ P3. The nodes are the
images in K of the 2-torsion points of JC , since these are precisely the points fixed by −1.

52

While K inherits scalar multiplication from JC , it loses the group law: the points P = π(±DP)

and Q = π(±DQ) on K do not uniquely determine P + Q = π(±DP+Q), unless at least one of
P and Q is the image of a point in JC [2]. However, the operation {P,Q} 7→ {P + Q,P − Q} is
well-defined, so we have a pseudo-addition operation (P,Q, P −Q) 7→ P +Q.

Distinct models of hyperelliptic curves of genus 2 give rise to different Kummer surface models.
This is analogous to what we observe in the dimension-1 case: whereas a general elliptic curve in
(short) Weierstrass form admits x-only arithmetic, this x-only arithmetic is much more efficient
for curves in Montgomery form. Similarly, the general Kummer surface introduced by Cassels and
Flynn [66] can be constructed for any hyperelliptic curve C, yet high-speed cryptography requires
the use of the more efficient Kummer surfaces constructed from curves in Rosenhain form. These
fast Kummer surfaces will be introduced in Chapter 9.

2.5.2 Isomorphism classes of abelian surfaces

As with elliptic curves, we work with abelian surfaces A defined over k up to isomorphism. First
consider the case where JC is the Jacobian of a genus-2 curve C/k. Recall from Definition 2.1.10
that P(1, 2, 3, 5) is weighted projective space with weights 1, 2, 3, 5. We associate to C its Igusa–
Clebsch invariants

(I2(C) : I4(C) : I6(C) : I10(C)) ∈ P(1, 2, 3, 5).

Explicitly, if C is a genus-2 curve given by a Weierstrass equation

C : y2 = (x− a0) · · · (x− a5),

where a0, . . . , a5 ∈ k, we define:

I2(C) :=
∑
15

(01)2(23)2(45)2, I4(C) :=
∑
10

(01)2(12)2(20)2(34)2(45)2(53)2,

I6(C) :=
∑
60

(01)2(12)2(20)2(34)2(45)2(53)2(03)2(14)2(25)2, and

I10(C) :=
∏
i<j

(ai − aj)2,

where, for any permutation σ ∈ S6, we let (ij) denote the difference (aσ(i) − aσ(j)). Here the
sums are taken over all distinct expressions in the ai as σ ranges over S6; the subscripts denote
the number of expressions in each sum. Moreover, the isomorphism class of C over k is uniquely
determined by its Igusa–Clebsch invariants (see [188, 233]).

In the case where E1 ×E2 is the product of elliptic curves E1, E2, the isomorphism class of A
as a p.p. abelian surface is uniquely determined by the set of j-invariants {j(E1), j(E2)}. Here,
we consider the set of invariants, rather than an ordered tuple, as the order of the elliptic curves
does not matter: E1 × E2 is isomorphic to E2 × E1.

53

Example 2.5.1. Let F112 = F11(i) where i2 = −1. Consider the hyperelliptic curves

C1 : y
2 = (7i+ 3)x6 + x5 + (2i+ 7)x4 + (5i+ 10)x3 + 3x2 + (3i+ 5)x+ 4i+ 8, and

C2 : y
2 = x5 + x3 + 9x

We can write the equation defining C1 as y2 = (x− a0) · · · (x− a5) where

a0 = 8i+ 2, a1 = 9i+ 8, a2 = 7i+ 10, a3 = i+ 7, a4 = i+ 9, a5 = 2i+ 7.

Then, for example,

I10(C1) =
∏
i<j

(ai − aj)2

= (a0 − a5)2 · (a0 − a5)2 · (a2 − a5)2 · (a3 − a5)2 · (a4 − a5)2·

(a0 − a4)2 · (a1 − a4)2 · (a2 − a4)2 · (a3 − a4)2 · (a0 − a3)2·

(a1 − a3)2 · (a2 − a3)2 · (a0 − a2)2 · (a1 − a2)2 · (a0 − a1)2

= 5.

We can similarly compute I2(C1), I4(C1), I6(C1) using the a0, . . . , a5 ∈ F112 ; we omit it from
this example as the formulæ are very long. We find that the Igusa–Clebsch invariants of C1 are
(4 : 1 : 6 : 5) ∈ P(1, 2, 3, 5)(F112) and of C2 are (5i+ 1 : 2i+ 4 : 2 : 7i+ 3) ∈ P(1, 2, 3, 5)(F112). As
the invariants lie in weighted projective space, we need to normalise them to see if they are equal.
A common choice of normalisation is(

I4(C)

I2(C)2
,
I2(C)I4(C)

I6(C)
,
I4(C)I6(C)

I10(C)

)
∈ A3.

This give us normalised invariants (9, 8, 10) for both C1 and C2, and therefore the corresponding
Jacobians J1 and J2, respectively, are isomorphic over F11.

2.6 Isogenies between abelian varieties

Now that we have introduced our objects of interest, we are ready to discuss morphisms between
them. As the group structure of abelian varieties is crucial for all cryptographic applications, we
restrict to maps that preserve this group structure.

Definition 2.6.1 (Isogeny of abelian varieties). Let A1 and A2 be abelian varieties defined over k.
A morphism φ : A1 → A2 (of abelian varieties) is an isogeny of abelian varieties if it is surjective
on k-points and its kernel has finitely many points over k. We say A1 and A2 are isogenous is
there exists an isogeny φ : A1 → A2.

As an isogeny is a morphism, it is given by rational functions. We say the isogeny φ : A1 → A2

is defined over k if it can be defined as a rational function whose coefficients lie in k.

Remark 2.6.2. The finite kernel ensures that A1 and A2 are of the same dimension g.

54

An isogeny of abelian varieties φ : A1 → A2 is a morphism of abelian varieties, and therefore
commutes with the group law morphism ⊕: φ(P ⊕ Q) = φ(P) ⊕ φ(Q) for all P,Q ∈ A1(k). As
such, φ is a group homomorphism between the groups A1(k) and A2(k), for any field k over which
φ is defined. As φ is a group homomorphism, we have

φ(0A1) = φ(P ⊕−P) = φ(P)⊕ φ(−P) = φ(P)⊕−φ(P) = 0A2 .

In practice, this means we can easily recover the identity on the image from the image of 0A1
.

Remark 2.6.3. Consider the morphism of curves φ : C1 → C2. Then, φ is either constant or
surjective (see, for example, [292, Theorem 2.3]). Therefore, if φ : E1 → E2 is an isogeny of elliptic
curves, the surjectivity of φ implies that it is non-constant. This means we exclude uninteresting
morphisms such as the zero map.

Isogenies are said to be either separable or inseparable. We give the definition of these terms
below for completeness, but we highlight that we are (mostly) only interested in the former type.

Definition 2.6.4. Let φ : A → A′ be an isogeny of abelian varieties. Then, φ induces an
embedding φ∗ : f 7→ f ◦ φ of the function field k(A′) in k(A). We say φ is separable, inseparable,
or purely inseparable if the finite field extension k(A)/φ∗(k(A′)) has the corresponding property.

This field extension also gives us information about the degree of our isogeny. The degree will
be an important property of our isogenies as it indicates the cost of computing it.

Definition 2.6.5. The degree of φ is the degree of the extension k(A)/φ∗(k(A′)). We denote the
degree of φ by deg(φ).

Remark 2.6.6. Let us briefly consider a field k with char k = p > 0. As a finite extension of fields
in characteristic p > 0 is separable whenever its degree is not divisible by p, we see that an isogeny
defined over k is always separable if its degree is not divisible by char k.

The composition of isogenies is as we expect: composing two isogenies φ : A → A′ and ψ :

A′ → A
′′

will give the isogeny ψ ◦ φ : A→ A
′′
. Then, we have that deg(ψ ◦ φ) = deg(ψ) · deg(φ);

the degree of isogenies is multiplicative.
Every isogeny can be factorised as φ = φS ◦ φI where φI : A → B is an inseparable isogeny

and φS : B → A′ is a separable isogeny [146, Corollary V.5.8]. Furthermore, this isogeny is unique
up to isomomorphism in the sense that, if φ = φ′

S ◦ φ′
I is another factorisation then there is an

isomorphism α : B
∼−→ B such that φ′

S = φS ◦ α and φ′
I = α ◦ φI .

Consider the kernel of φ : A1 → A2 on k-points, namely ker(φ) ⊆ A1(k). In general, we have
degs(φ) = #ker(φ), where degs(φ) is the degree of the separable part of the isogeny φ (see, for
example, [244, pg. 63]). In particular, when φ is separable, the degree of the isogeny is given
precisely by the size of this kernel: deg(φ) = #ker(φ). From this we can see that the finite
subgroup ker(φ) ⊆ A(k) carries a lot of information about the isogeny when it is separable. In
fact, we have a correspondence between finite subgroups of the abelian variety A and isogenies
with domain A.

Theorem 2.6.7. Let A/k be an abelian variety. Then there is a one-to-one correspondence be-
tween:

55

• Finite subgroups G ⊆ A(k),

• Separable k-isogenies φ : A→ A′, where two isogenies φ1 : A→ A1, φ2 : A→ A2 are consid-
ered equal if there is an isomorphism ι : A1 → A2 such that φ2 = ι◦φ1, which has G = ker(φ)

and A′ = A/G.

Proof. A proof can be found in [244, pg. 72, Theorem 4] for abelian varieties of arbitrary dimension
g. For the case g = 1, a more down-to-earth proof is given by combining [292, Proposition III.4.12]
and [292, Exercise III.3.13].

This theorem is crucial for cryptographic applications; it tells us that separable isogenies are
completely determined by their kernels. Therefore, rather than representing our isogeny as a
rational function, we can instead store a description of a finite group, which is often much more
compact.

For many applications, we need to compute separable isogenies of large, composite degrees.
Computing these isogenies directly is computationally expensive. The following theorem shows
that we can instead factor an isogeny φ of degree degφ =

∏k
i=1 ℓi into a composition of isogenies

φ = φk ◦ · · · ◦ φ1, where deg(φi) = ℓi. In this sense, the degree of an isogeny is multiplicative.

Theorem 2.6.8. Let A1, A2, A3 be abelian varieties of dimension g over k and φ : A1 → A2,
φ′ : A1 → A3 be separable isogenies over k. Suppose that ker(φ) ⊆ ker(φ′). Then, there is a unique
isogeny ψ : A2 → A3 defined over k such that φ′ = ψ ◦ φ.

Proof. A proof can be found in [244, pg. 111, Theorem 1(A)] for general dimension g. For g = 1,
a simpler proof is given by Silverman [292, Corollary III.4.11].

By Theorem 2.6.8, if we have an isogeny φ of smooth degree, i.e., the prime factors of deg(φ)
are small, then we can efficiently compute φ by decomposing it into its prime degree parts.

Unless stated otherwise, we will assume our isogenies are separable from this point onwards.

2.6.1 Torsion Points

For N ∈ Z, let [N]A be the multiplication-by-N morphism on A, defined as follows. For N > 0,
we have

[N]A : A→ A,

P 7→ P + · · ·+ P︸ ︷︷ ︸
N

.

If N < 0 we set [N](P) = [−N](−P), otherwise if N = 0, we define [0]P = 0A. We define the
order of a point P ∈ A to be the least positive integer k such that [k]P = 0A.

Definition 2.6.9. We define the N -torsion subgroup of A(k), denoted A(k)[N] or simply A[N]

if the field of definition is clear, to be the kernel of [N]A on k-points. Equivalently, for every
P ∈ A[N] we have [N]P = 0A, so P has order dividing N .

56

The morphism [N]A is an isogeny of degree N2g, and it is a separable isogeny if and only if that
characteristic char k does not divide N [244, pg. 63]. In this case, #ker[N]A = #A(k)[N] = N2g.
In fact, the structure of the N -torsion point group is:

(2.6) A(k)[N] ∼= (Z/NZ)2g.

See, for example, Mumford [244, pg. 64].

Example 2.6.10. Let E be an elliptic curve defined over k with prime characteristic char k = p.
Suppose N ∈ N is not divisible by p. By Remark 2.6.6, the multiplication-by-N map [N]E : E → E

is separable of degree N2. Therefore, as E(k)[N] contains exactly the points P ∈ E(k) such that
[N]EP = 0E , we have #E(k)[N] = #ker([N]E) = N2. Similarly, for every integer d dividing N ,
we have #E(k)[d] = d2. As E(k)[N] is a finite abelian group, it can be written as the product of
cyclic groups, and so E(k)[N] ∼= (Z/NZ)2.

2.7 Pairings

We take a short detour from our discussion on isogenies of abelian varieties to introduce pairings.
Pairings were first used in cryptography as a cryptanalytic tool in elliptic curve cryptography to
reduce the complexity of the discrete logarithm problem on some weak curves [165, 229]. The use
of pairings to build cryptosystems was introduced, most notably, by Joux [196], who constructed a
one round protocol for tripartite Diffie–Hellman protocol. Following this, there was an explosion of
research constructing new primitives with pairings, such as, identity-based encryption [40], short
signatures [42], group signatures [38, 43], and commitment schemes [198]. More recently, pairings
have found a new application in accelerating isogeny-based cryptoschemes (for example, [265]).
The purpose of this section is to define cryptographic pairings with the lens of isogeny-based
cryptography. In particular, we do not go into detail on how the pairing maps are computed, but
rather focus on their most useful properties. General references for this section are [144, 171, 292].
A brilliant introduction to pairings for beginners is given by Costello [101].

A pairing is a special type of bilinear map on a (additive) abelian group G1 taking values in
some other (multiplicative) abelian group GT :

(·, ·) : G1 ×G1 → GT .

The bilinearity property means that, for P,Q,R ∈ G1 we have

(P +Q,R) = (P,R) · (Q,R), and (P,Q+R) = (P,Q) · (P,R).

This bilinearity property of pairings is what makes it so useful for cryptography. Indeed, the
group structure of G1 gives us a way to add points P,Q ∈ G1 using the group law, whereas the
bilinearity of the pairing map allows us to perform multiplication in the group GT . Being able to
exploit both this addition and multiplication has proven invaluable for the construction of many
advanced cryptosystems.

57

Remark 2.7.1. We use this notation for elements of the group G1 as eventually this will be a
subgroup of A(k), where A is a p.p. abelian variety defined over k.

To encompass a wider range of useful pairings, we relax the condition that the two arguments in
the bilinear map come from the same group G1, and arrive at the following definition of a pairing.

Definition 2.7.2. Let G1 and GT be groups of prime order N , and let G2 be a group where
each element has order dividing N .2 We write G1, G2 as additive groups with identity 0G1 , 0G2

(respectively), and GT as a multiplicative group with identity 1GT
. A cryptographic pairing e is

an efficiently computable function
e : G1 ×G2 → GT ,

satisfying the following properties:

1. Non-degeneracy: e(P1, P2) = 1GT
for all P2 ∈ G2 if and only if P1 = 0G1 , and similarly

e(P1, P2) = 1GT
for all P1 ∈ G1 if and only if P2 = 0G2 .

2. Bilinearity: For all P1, Q1 ∈ G1 and P2, Q2 ∈ G2, we have e(P1+Q1, P2) = e(P1, P2)e(Q1, P2)

and e(P1, P2 +Q2) = e(P1, P2)e(P1, Q2).

Remark 2.7.3. When G1 and G2 are cyclic, the bilinearity condition collapses to: for all P1 ∈ G1

and P2 ∈ G2, we have e(aP1, bP2) = e(P1, P2)
ab for any a, b ∈ Z.

Remark 2.7.4. The property in Definition 2.7.2 that makes the pairing cryptographic is the fact
that it is efficiently computable. Otherwise, it would not be useful for practical applications.

We introduce the two main instantiations of pairings for use in cryptography: the Weil and
the Tate pairing. The first applications in cryptography used the Weil pairing. However, the Tate
pairing and its variants are more commonly used today as they have proven to be more efficient.
We detail their construction in detail for Jacobians of hyperelliptic curves of genus g, and defer to
other literature for their instantiation when working with an abelian variety.

2.7.1 The Weil pairing

Following Milne [237, §16], we define the N -Weil pairing for any abelian variety. Let µN be
(multiplicative) group of the N -th roots of unity. For abelian varieties defined over k and N ≥ 2

coprime to char k, we have a non-degenerate bilinear map

A(k)[N]× Â(k)[N]→ µN .

When (A, λ) is principally polarised, the isomorphism λ : A
∼−→ Â induces the N -Weil pairing

eN : A(k)[N]×A(k)[N]→ µN .

We detail the construction of the N -Weil pairing in the case where A is the Jacobian JC of a
hyperelliptic curve C of genus g. For a divisor class P ∈ JC(k)[N] of order N , we fix a divisor DP

2G2 need not be cyclic.

58

which represents this class. Let fN,P ∈ k(C) be a function with divisor div(fN,P) = NDP . The
evaluation of fN,P at a divisor D =

∑
Q∈C nQ(Q) is given by

fN,P (D) :=
∏
Q∈C

fN,P (Q)nQ .

The N -Weil pairing
eN : JC(k)[N]× JC(k)[N]→ µN

is given by eN (P,Q) := fN,P (DQ)/fN,Q(DP), when DQ has disjoint support to DP .

Remark 2.7.5. When g = 1, we obtain a pairing E(k)[N]×E(k)[N]→ µN . In this case, we can
take DP = (P)− (0E) for P ∈ E(k)[N]. The functions fN,P are called Miller functions and can be
computed using Miller’s algorithm [235] in O(log(N)). An extended discussion on how to compute
these functions for g ≥ 1 can be found in [172].

2.7.2 The Tate pairing

Tate defined a pairing for arbitrary abelian varieties (defined over local fields). An overview of
Tate’s definition can be found in [144]. Lichtenbaum [219] then showed how this pairing can
be computed efficiently for the Jacobian of hyperelliptic curves. Frey and Rück [166] focused
on the case of elliptic curves defined over finite fields, framing this pairing within the context
of cryptography. Due to its history, the Tate pairing we present here is also referred to in the
literature as the Tate–Lichtenbaum pairing or the Frey–Rück pairing. For our description of the
Tate pairing, we restrict to a finite field k = Fq of characteristic p.

Let C be a hyperelliptic curve of genus g defined over Fq with Jacobian JC . Let N ̸= p be a
prime dividing #JC(Fq). Let P,Q ∈ JC(Fqk) be such that DP and DQ have disjoint support. Let
k > 1 be the embedding degree, defined to be the smallest positive integer such that N | qk − 1,
i.e., the smallest positive integer such that µN ⊂ Fpk . The Tate pairing

TN : JC(Fqk)[N]× JC(Fqk)/[N]JC(Fqk)→ F×
qk
/(F×

qk
)N

is defined as TN (P,Q + [N]JC(Fqk)) := fN,P (DQ)(F×
qk
)N . Frey and Rück [166] showed that the

Tate pairing can be computed in O(log(N)) operations in Fqk .
The output of the Tate pairing lies in an equivalence class. If this pairing is to be useful in

practice, different parties must be able to compute the same exact value, rather than the same
value under the above notion of equivalence. Therefore, we now adapt the Tate pairing so that its
output produces unique values.

When JC(Fqk) does not contain any point of order N2, the Tate pairing can be given by a map

JC(Fqk)[N]× JC(Fqk)[N]→ F×
qk
/(F×

qk
)N .

Furthermore, we observe that F×
qk
/(F×

qk
)N is isomorphic to the subgroup of N -th roots of unity

µN ⊆ F×
qk

via the map a(F×
qk
)N 7→ a(q

k−1)/N . Using these two observations, we define a new pairing

59

induced by the Tate pairing, called the reduced Tate pairing :

tN : JC(Fqk)[N]× JC(Fqk)[N]→ µN ⊆ F×
qk
,

(P,Q) 7→ TN (P,Q)(q
k−1)/N = fN,P (DQ)

(qk−1)/N .

2.8 Isogenies of principally polarised abelian varieties

As we work exclusively with principally polarised abelian varieties, we want to restrict to isogenies
that respect this polarisation. We make this more precise in the following definition.

Definition 2.8.1. Let (A, λ) and (A′, λ′) be p.p. abelian varieties. An isogeny φ : A→ A′ is said
to be and isogeny of principally polarised abelian varieties if there exists an integer m ≥ 1 such
that φ̂ ◦ λ′ ◦ φ = [m]λ. We also call such an isogeny a polarised isogeny.

Using the Weil pairing, we define maximal isotropic subgroups, which will correspond to kernels
of isogenies of p.p. abelian varieties [237, Proposition 16.8].

Definition 2.8.2. Let A be an abelian variety defined over k. We say that a subgroupG ⊆ A(k)[N]

is isotropic (with respect to the N -Weil pairing) if eN (P,Q) = 1 for all P,Q ∈ G. We say G is
maximal isotropic if moreover there is no isotropic subgroup G′ with G ⊊ G′ ⊆ A(k)[N].

As we can factor an isogeny φ into its prime degree components (see Theorem 2.6.8), we restrict
to prime N ∈ N. Every maximal isotropic subgroup G ⊂ A(k)[N] is of the form G ∼= (Z/NZ)g, and
is therefore generated by g points P1, . . . , Pg such that eN (Pi, Pj) = 1 for all i, j = 1, . . . , g [159,
Proposition 2].

Let A1 be a p.p. abelian variety defined over k and let G ⊂ A1(k)[N] be a maximal isotropic
subgroup. By Theorem 2.6.7, the subgroup G = ⟨P1, . . . , Pg⟩ corresponds to an isogeny φ : A1 →
A2 := A1/G with kernel G. As the kernel of φ is maximal isotropic subgroup, φ is an isogeny of
p.p. abelian varieties. In fact, every isogeny of p.p. abelian varieties arises from such a maximal
isotropic subgroup.

Proposition 2.8.3. Let (A, λ) be a principally polarised abelian variety of dimension g defined over
k. Let G be a finite, proper subgroup of A(k). There exists a p.p. abelian variety A′ of dimension-g
defined over k, and an isogeny φ : A → A′ (of degree coprime to char k) with ker(φ) = G, if and
only if G ⊆ A(k)[N] is a maximal isotropic subgroup for some N ∈ N.

Proof. We follow Flynn and Ti [159, Proposition 1]. By Theorem 2.6.7, φ : A → A/G is an
isogeny of abelian varieties, so it suffices to consider the polarisation. Letting ψ = [degφ] ◦ λ be a
polarisation on A so that kerφ ⊆ kerψ, we can construct a polarisation λ′ on A/G following Milne
[237, Proposition 16.8, Remark 16.9], where deg(λ′) = 1. Thus, (A/G, λ′) is a principally polarised
abelian variety. Conversely, suppose φ : A → A′ is an isogeny of p.p. abelian varieties. By [237,
Proposition 16.8], ker(φ) is a maximal isotropic subgroup of A(k)[N] for some N coprime to
char k.

Example 2.8.4. Let F1312 = F101(i) where i2 = −1. Consider the hyperelliptic curve

C1 : y2 = x(x− 1)(x− (49i+ 104))(x− 91)(x− (45i+ 52))

60

of genus 2 (in Rosenhain form) defined over F1312 with corresponding Jacobian J1. Let

DP =
(
x2 + 83x+ 77i+ 20, (6i+ 73)x+ 35i+ 126

)
, and

DQ =
(
x2 + (6i+ 73)x+ 31i+ 62, 83x+ 64i+ 72

)
,

be divisors in J1 in Mumford coordinates. We have that DP and DQ ∈ J1(F1312)[3] with
e3(DP , DQ) = 1. Therefore, the subgroup G = ⟨DP , DQ⟩ ⊂ J1(F1012)[3] is maximal isotropic
(with respect to the 3-Weil pairing). It generates the isogeny φ : J1 → J2 where J2 is the Jacobian
of the genus-2 hyperelliptic curve

C2 : x(x− 1)(x− (89i+ 24))(x− (119i+ 130))(x− (130i+ 41)).

As we are working with p.p. abelian varieties, this type of isogeny will naturally be of most
interest to us, and so we give it a special name that highlights the structure of the kernel.

Definition 2.8.5. Let A be a p.p. abelian variety of dimension g defined over k. We call the
(separable) isogeny φ : A → A/G, where G ⊂ A(k)[N] is a maximal isotropic subgroup, an
(N, . . . , N)-isogeny, and we say that G is an (N, . . . , N)-subgroup.

Proposition 2.8.6. Let φ : A1 → A2 be an (N, . . . , N)-isogeny between p.p. abelian varieties
A1, A2 defined over k. There exists a unique dual isogeny (up to isomorphism), denoted φ̂ : A2 →
A1, such that

φ̂ ◦ φ = [deg(φ)]A1 , and φ ◦ φ̂ = [deg(φ)]A2 .

Proof. We show this for g = 1 following Silverman [292, III.6.1(a)]. For g > 1, see Mumford
[244, Theorem 1, pg. 143]. Let φ : A1 → A2 be an N -isogeny between p.p. abelian varieties
A1, A2 of dimension 1. Since ker(φ) = Z/NZ, we have that ker(φ) ⊂ A1(k)[N] = ker([N]).
By Theorem 2.6.8, there is an isogeny ψ with [N]A1 = ψ ◦ φ. To show uniqueness, suppose that
ψ′ : A2 → A1 is another such isogeny. Then

(ψ − ψ′) ◦ φ = [N]A1
− [N]A1

= [0].

As φ is non-constant, ψ − ψ′ must be constant and so ψ = ψ′. We denote the isogeny ψ by φ̂ and
call it the dual isogeny. Finally, we have

(φ ◦ φ̂) ◦ φ = φ ◦ [N]E1
= [N]E2

◦ φ,

and so φ ◦ φ̂ = [N]E2 , as φ is non-constant.

Remark 2.8.7. It can also be shown that when φ : E1 → E2 is an inseparable isogeny between
elliptic curves E1, E2, there exists a unique dual isogeny φ̂. See, for example, [292, Theorem
III.6.1(a)].

2.8.1 Isogenies between elliptic curves

Let E be an elliptic curve defined over k. Fix a positive integer N not divisible by char k. We
specialise the discussion in Section 2.8 to dimension g = 1 in order to define N -isogenies. The

61

kernel of such an isogeny is an N -subgroup, namely a cyclic subgroup of E(k) generated by a point
P ∈ E(k)[N]. In this way, N -isogenies are examples of cyclic isogenies.

Remark 2.8.8. Every point P ∈ E[N] gives a (not necessarily distinct) isotropic subgroup of E[N]

as every point Q ∈ ⟨P ⟩ is of the form [k]P for some 1 ≤ k ≤ N and eN (P, [k]P) = eN (P, P)k = 1

by the alternating property of the N -Weil pairing [292, Proposition III.8.1(b)].

For an N -subgroup G = ⟨P ⟩ where P ∈ E[N], there is an isogeny φ : E −→ E/G with kernel
G and image unique up to isomorphism. On input of the point P , computing the N -isogeny with
kernel G has complexity O(N) using Vélu’s formulas [314]. For large N , it is preferable to compute
φ using

√
élu formulas [27] with an asymptotic complexity of Õ(

√
N). Using these algorithms, the

isogeny will be defined over the same field k as P ∈ E(k)[N]. A discussion on how to compute
isogenies when P is defined over an extension field k′/k but the subgroup ⟨P ⟩ ⊆ E(k)[N] is given
in Chapter 11.

We have shown that, given a point P ∈ E[N], we can compute the isogenies corresponding to
the kernel ⟨P ⟩. However, it is natural to question how many distinct isogenies of degree N have
domain E. This corresponds to the number of distinct cyclic subgroups of E[N] ∼= Z/NZ×Z/NZ
(see Section 2.6.1), and thus grows linearly with the degree. More explicitly, if N =

∏n
i=1 ℓ

ei
i , there

are DN,1 N -subgroups where

(2.7) DN,1 :=

n∏
i=1

(ℓi + 1)ℓei−1
i .

For prime N , the number of outgoing N -isogenies from E is N + 1.

Example 2.8.9. Consider the elliptic curve Eα : y2 = x(x − α)(x − 1/α) in Montgomery form
defined over F312 where α = 11i + 16. The point (α, 0) ∈ Eα(F312) has order 2, and therefore
generates the kernel of a 2-isogeny φ : Eα → Eα′ where Eα′ : y2 = x(x − α′)(x − 1/α′) has α′ =

14i+ 2.

2.8.1.1 Modular Polynomials

The classical modular polynomial ΦN (X,Y) ∈ Z[X,Y] of level N parameterises pairs of elliptic
curves with cyclic N -isogeny in terms of their j-invariants. More precisely, ΦN is the unique (up to
scaling) bivariate polynomial such that ΦN (j1, j2) = 0 if and only if j1 and j2 are the j-invariants
of N -isogenous elliptic curves. Sutherland’s database [301] contains ΦN (X,Y) for all N ≤ 300 and
for all primes N ≤ 1000, computed using techniques from various joint works of theirs [59, 302].

The polynomial ΦN is symmetric in X and Y , i.e., ΦN (X,Y) = ΦN (Y,X). If j(E) ̸= 0, 1728

(more details on these exceptions in Section 4.2), there are exactly DN,1 N -isogenies emanating
from E, where DN,1 is as defined in Equation (2.7). Therefore, ΦN (X, j(E)) must be of degree
DN,1 in X so that there are DN,1 roots corresponding to the elliptic curves isogenous to E. By
symmetry, the degree of ΦN (X,Y) in Y must also be DN,1.

The difficulty in computing ΦN (X,Y) is in the size of its coefficients, rather than the number
of them. As discussed by Sutherland [302], storing ΦN (X,Y) requires O(N3 logN) bits, which
corresponds to several gigabytes for N ≈ 1000 and many terabytes for N ≈ 104. Fortunately, the

62

modular polynomials already contained in Sutherland’s database are more than sufficient for the
purposes of this thesis. In Chapter 8, we use modular polynomials in the context of cryptanalysis
of the supersingular isogeny problem over a fixed finite field Fp2 , meaning we can reduce all the
large coefficients modulo p as a precomputation. Indeed, ΦN (X,Y) ∈ Z[X,Y] can be preprocessed
into

ΦN,p(X,Y) ∈ Fp[X,Y],

where we note the additional subscript, defined by reducing all coefficients of ΦN (X,Y) modulo
p. By the symmetry of ΦN (X,Y), this means we must store around D2

N,1/2 coefficients in Fp,
requiring only O(N2 log p) bits.

Example 2.8.9 (continuing from p. 62). The classical modular polynomial of level 2 modulo 31

is given by

Φ2,31(X,Y) = X3 + 30X2Y 2 + 6X2 + 5XY + 12X + Y 3 + 6Y 2 + 12Y + 8.

As expected, it is of degree 3 in X and Y . Let Eα be as before with j(Eα) = 8i+ 17. We have

Φ2(X, j(Eα)) = X3 + (7i+ 29)X2 + (9i+ 4)X + (30i+ 18),

which has roots j1 = 19, j2 = 8i+27 and j2 = 16i+18 in F1032 . These j-invariants correspond to
the three 2-isogenous neighbours of Eα. For example, with Eα′ as before we have j(Eα′) = 16i+18.

2.8.1.2 The endomorphism ring

An important object, particularly in the context of isogeny-based cryptography, is the endomor-
phism ring of an elliptic curve.

Definition 2.8.10 (Endomorphism). An isogeny φ : E → E is called an endomorphism.

The set of endomorphisms of E together with the zero map [0]E form a ring End(E) under
the operations of pointwise addition and composition. The invertible elements of End(E) form
the automorphism group of E, which is denoted by Aut(E). In this way, an automorphism is an
isomorphism φ : E → E.

Example 2.8.11. The multiplication-by-N morphism [N]E on E, for N ∈ Z, is an example of an
endomorphism. Therefore, we have that Z ⊆ End(E). In fact, it forms a subring of End(E).

In Section 3.1, we look closer at endomorphism rings and show their connection with quaternion
algebras.

Example 2.8.12. Another important example of an endomorphism arises when we consider an
elliptic curve defined over a finite field Fq of characteristic p. The q-power Frobenius endomorphism
π on an elliptic curve E ⊆ P2 is defined as

π : E → E, (X : Y : Z) 7→ (Xq : Y q : Zq).

For an elliptic curve E defined over Fq we have Z[π] ⊆ End(E).

63

2.8.2 Isogenies between abelian surfaces

We look now at p.p. abelian surfaces defined over k and the (N,N)-isogenies between them. As
before, we fix N ∈ N coprime to char k.

The (N,N)-subgroups of A1[N] are generated by two points P,Q ∈ A1[N] with eN (P,Q) = 1.
For every (N,N)-subgroup G ⊂ A1[N] there is an isogeny φ : A1 −→ A2 := A1/G, with kernel
G = ⟨P,Q⟩ and image unique up to isomorphism (as a polarised abelian variety). The number
of (N,N)-subgroups DN,2 is given by Castryck and Decru [69] (see also Costello and Smith [107,
Lemma 2] and Flynn and Ti [159, Proposition 3(2)] when N is a prime not equal to char k,
respectively prime power):

(2.8) DN,2 := N3
∏

primes
ℓ|N

1

ℓ3
(ℓ+ 1)(ℓ2 + 1).

When N is prime DN,2 = (N2 +1)(N +1), and the number of isogenies emanating from A1 grows
as O(N3).

Example 2.8.13. Let F832 = F83(i) where i2 = −1. Consider the following genus-2 hyperelliptic
curve:

C1 : y2 = (13i+36)x6+(4i+7)x5+(75i+44)x4+(69i+18)x3+(31i+60)x2+(5i+18)x+62i+74,

with corresponding Jacobian J1. There exists a (2, 2)-isogeny φ : J1 → J2 where J2 is the Jacobian
of hyperelliptic curve

C2 : y
2 = (38i+10)x6+(76i+32)x5+(61i+53)x4+(74i+66)x3+(39i+24)x2+(69i+18)x+60i+1.

There exists another (2, 2)-isogeny from J1, namely ψ : J1 → E1 × E2 where

E1 : y
2 = x3 + (73i+ 45)x2 + (34i+ 79)x+ (69i+ 77), and

E2 : y
2 = x3 + (27i+ 59)x2 + (38i+ 34)x+ (66i+ 47)

are elliptic curves.

The example above highlights that there are different types of (N,N)-isogenies. In fact, we can
consider three types of (N,N)-isogenies depending on whether A1 or A2 are Jacobians or products
of elliptic curves:

1. An (N,N)-isogeny between Jacobians: φ : J1 → J2;

2. A splitting (N,N)-isogeny: φ : J1 → E1 × E2;

3. A gluing (N,N)-isogeny: φ : E1 × E2 → J2.

We will primarily be considering the first two types of isogenies. Developing a method to
efficiently detect whether a Jacobian is (N,N)-isogenous to a product of elliptic curves will be a
large focus of Chapter 8.

64

2.9 Elliptic curves over finite fields

Up until now, we have looked at abelian varieties defined over a perfect field k. In cryptography,
however, we usually work with finite fields Fq with prime characteristic p. This section is dedicated
to exploring special properties of elliptic curves over finite fields that we will use.

Given two elliptic curves E1 and E2 defined over Fq, the first question one may ask is:

Are these elliptic curves isogenous?

A landmark result by Tate [306] gives us a way to answer this question.

Theorem 2.9.1 (Tate’s Isogeny Theorem). Elliptic curves E1 and E2 defined over Fq are isogenous
over Fq if and only if #E1(Fq) = #E2(Fq).

Therefore, to answer this question we need to find the order of the elliptic curve group E(Fq).
For an elliptic curve E/Fq, the group E(Fq) is finite, and Hasse’s theorem gives us a bound on the
size of E(Fq).

Theorem 2.9.2 (Hasse’s Theorem). Let E be an elliptic curve defined over finite field Fq with
characteristic p. We have that

(2.9) | #E(Fq)− q − 1 | ≤ 2
√
q.

Proof. This is [292, Theorem 1.1]. We give the proof here for completeness. For P ∈ E(Fp), we
have that P ∈ E(Fq) if and only if πq(P) = P , where πq is the q-power Frobenius morphism on
E. Therefore, E(Fq) = ker(1− πq). As 1− πq is separable (see [292, Corollary 5.5]), we have that
#E(Fq) = deg(1− πq). Using a variant of the Cauchy–Schwarz inequality (see [292, Lemma 1.2])
and the fact that deg πq = q, we get the statement of the theorem.

Remark 2.9.3. Let E/Fq be an elliptic curve. The quantity a = q + 1 − #E(Fq) is called the
trace of Frobenius.3

We now have efficient point counting algorithms for elliptic curves over finite fields, such as the
SEA algorithm [278], making the decisional question of whether two elliptic curves are isogenous
easy in this case.

Remark 2.9.4. Suppose φ : E1 → E2 is a Fq-rational (separable) isogeny of degree N > 1, i.e.,
#ker(φ) = N . A common point of confusion is how E1/Fq and E2/Fq can have the same number
of Fq-points, as guaranteed by Tate’s theorem. Indeed, if all points in ker(φ) are Fq-rational, there
are #E1(Fq) − N elements in E1(Fq) that are mapped to non-zero points in E2(Fq). As N > 1,
this seems to suggest that #E2(Fq) < #E1(Fq). However, this is resolved by the fact that points
in higher extension fields, i.e., points in E(Fqk) for k > 1, map to E2(Fq) under φ. The same thing
happens in the reverse direction when mapping points from E2 to E1 via the dual isogeny.

3Indeed, it is equal to the trace of the q-power Frobenius map considered as a linear transformation of the ℓ-adic
Tate module of E [292, Remark V.2.6].

65

The proof of this Tate’s theorem is not constructive. Given the existence of an isogeny φ :

E1 → E2, we need extra information to compute φ. Theorem 2.6.7 tells us that it is sufficient to
know the kernel of φ. Explicitly constructing such an isogeny (without the extra information) is
conjectured to be hard, as we will discuss in more detail in Section 4.3.

There are two distinct types of elliptic curve over Fq: supersingular and ordinary. This dis-
tinction is important for this thesis: in Section 4.1 we will argue that supersingular elliptic curves
(and their higher-dimensional analogue) are the correct choice within the context of isogeny-based
cryptography.

Definition 2.9.5. Let E be an elliptic curve defined over finite field Fq of prime characteristic p.
We say E is supersingular if E[p] = {0E}. Otherwise, we have E[p] = Z/pZ and E is ordinary.

Later in Lemma 4.1.1 from Section 4.1, we will give equivalent definitions of supersingularity
which will help us generalise this property to higher dimensional p.p. abelian varieties.

66

Chapter 3

Quaternion Algebras

Deuring [133] showed the connection between the geometric world of supersingular curves and the
arithmetic world of quaternion algebras. This connection has proved to be a powerful constructive
and cryptanalytic tool in isogeny-based cryptography, and it will be essential for the work in this
thesis. In Section 3.1 we give the necessary background on quaternion algebras and then depict
the Deuring correspondence in Section 3.2. Throughout, we refer to Voight [316] and Leroux [217].

3.1 Quaternion algebras

A quaternion algebra is a non-commutative algebra, defined as follows.

Definition 3.1.1 (Quaternion algebra). An algebra B over a field k is a quaternion algebra if
there exist i, j ∈ B such that B is a k-vector space with basis 1, i, j, ij satisfying and

i2 = a, j2 = b, and ij = −ji,

for some a, b ∈ k×. We usually denote ij by k.

We restrict to quaternion algebras defined over k = Q. For every prime p, we can define the
field of p-adic numbers Qp, as defined in Section 1.2. The extension of scalars B⊗Q Qp (as defined
by Bourbaki [51, §II.5]) is either a matrix ring or a division algebra (see Example 1.2.1). We say
that B is unramified (or split) at p if B ⊗Q Qp is the matrix ring M2(Qp), and otherwise B is
ramified at p. Similarly, we say that B is unramified (or split) at ∞ if B ⊗Q R is the matrix ring
M2(R). Otherwise, B is ramified at ∞.

We focus on a particular quarternion algebra: namely the quaternion algebra over Q ramified
at a prime p and ∞ and unramified elsewhere, denoted Bp,∞. When we introduce the Deuring
correspondence in Section 3.2, the prime p will equal the characteristic of the finite field over which
our elliptic curves are defined.

For an element α = x+ yi+ zj + wk ∈ Bp,∞, the conjugate α of α is defined as

α := x− yi− zj − wk,

where x, y, z, w ∈ Q. We define the reduced trace on Bp,∞ by

(3.1) trd: Bp,∞ → Q, α 7→ α+ α.

The reduced trace trd is a Q-linear map, meaning that for α, β ∈ Bp,∞ we have trd(α + β) =

67

trd(α) + trd(β). Similarly, we define the reduced norm as

(3.2) nrd: Bp,∞ → Q, α 7→ αα.

The reduced norm nrd is multiplicative, i.e., nrd(αβ) = nrd(α) nrd(β).

3.1.1 Orders and Ideals

We are mainly interested in lattices of the quaternion algebra Bp,∞.

Definition 3.1.2. A lattice of Bp,∞ is a Z-submodule of rank 4. If a lattice O ⊂ Bp,∞ is also a
subring of Bp,∞, then O is said to be an order of Bp,∞. An order is maximal if it is not properly
contained in another order.

Remark 3.1.3. The ring of integers Ok is an order in a quadratic field k = Q(
√
d). In fact,

it is the unique maximal order in Q(
√
d). However, this construction does not work in the non-

commutative setting: the set of all integral elements (i.e., α ∈ Bp,∞ satisfying a monic polynomial
with integer coefficients) does not form an order, see [316, Example 10.1.1]. Furthermore, there
are many maximal orders in Bp,∞: if O is a maximal order and α ∈ B×p,∞1 then αOα−1 ⊆ Bp,∞ is
a maximal order, and we may have αOα−1 ̸= O due to non-commutativity.

Example 3.1.4. Consider the quaternion algebra Bp,∞ with p ≡ 3 mod 4. The lattice O =

Z+ iZ+ jZ+ kZ in Bp,∞ is closed under multiplication and so defines an order. However, it is not
a maximal order. Indeed, O ⊊ Z+ iZ+ i+j

2 Z+ 1+k
2 Z.

Let I ⊆ Bp,∞ be a lattice and define

OL(I) := {α ∈ Bp,∞ : αI ⊆ I}.

Then, OL(I) is an order, called the left order of I. We define the right order of I analogously. If
O is the left order of I, and O′ is its right order, then we say that I is a connecting (O,O′)-ideal.
We sometimes denote I by I(O,O′) to highlight this property. Note that O and O′ need not
be distinct. This choice in terminology will become clear in Section 3.2 when we show the link
between such ideals and isogenies that ‘connect’ two elliptic curves.

Example 3.1.5. Let I be a principal ideal, meaning that I = OL(I)α for some α ∈ B×p,∞. Then,
OR(I) = α−1OL(I)α. Therefore, I = αOR(I) and OR(I) and OL(I) are isomorphic.

Definition 3.1.6. For an order O, we define a left fractional O-ideal to be a lattice I ⊂ Bp,∞
such that O ⊆ OL(I). Furthermore, we say I is integral if I ⊆ OL(I). We define right integral
and fractional O-ideals similarly.

As with elements of the quaternion algebra, we can define the conjugate and reduced norm of
an ideal.

Definition 3.1.7. The conjugate of an ideal I is given by I := {α : α ∈ I}. The reduced norm
nrd(I) of an ideal I is the largest positive rational number such that nrd(α) ∈ nrd(I)Z for any
α ∈ I.

1In this thesis, we use the R× to denote the invertible elements of R.

68

Remark 3.1.8. Any ideal I in Bp,∞ can be written as I = OL(I)α + OL(I) nrd (I) for some
α ∈ OL(I), and similarly for OR(I). We simplify this notation by writing Oα + ON = O⟨α,N⟩
for any order O [316, Chapter 16, Exercise 6].

Henceforth, we only deal with integral left fractional ideals (unless otherwise stated) and there-
fore simply refer to them as ideals. The choice of left ideals over right ideals is an arbitrary choice;
we can switch from left to right ideals simply by taking conjugates as OL(I) = OR(I).

3.1.1.1 Invertible Ideals

Before defining invertible ideals, we discuss quaternion ideal multiplication.

Definition 3.1.9. Given two ideals I, J in a quaternion algebra Bp,∞, we say they are compatible
if OR(I) = OL(J).

We remark that this compatibility relation is neither symmetric nor transitive. When two ideals
I, J in Bp,∞ are compatible, their product IJ := {αβ : α ∈ I, β ∈ J} is also an ideal with left order
OL(I) and right order OR(J). Furthermore, nrd(IJ) = nrd(I) · nrd(J).

Definition 3.1.10. An ideal I is invertible if there exists another ideal J such that

IJ = OL(I) = OR(J) and JI = OL(J) = OR(I).

We denote J by I−1.

When the ideal I is invertible, I and its conjugate satisfy the following relation

(3.3) II = nrd(I)OL(I),

which recovers a similar equation to Equation (3.2) which holds for elements of a quaternion
algebra. Using this, we can compute the inverse as

(3.4) I−1 =
1

nrd(I)
I.

When O is a maximal order in Bp,∞, every O-ideal is invertible [316, Proposition 16.1.2].

Example 3.1.11. If I is a principal ideal, then I = OL(I)α for some α ∈ B×p,∞, and I is invertible.
Letting O := OL(I), we have I−1 = α−1O: we have

(Oα)(α−1O) = O(αα−1)O = O,

and by Example 3.1.5
(α−1O)(Oα) = αOα−1 = OR(I),

as required.

69

3.1.1.2 Equivalent Ideals

We define an equivalence relation ∼ on (left) O-ideals by right scalar multiplication. Two ideals
I and J are (right-)equivalent if I = Jα for some α ∈ B×p,∞. We denote this by I ∼ J . If I ∼ J ,
then we have OL(I) = OL(J) and OR(I) = α−1OR(J)α.

Following Kohel, Lauter, Petit, and Tignol [203], for any invertible ideal J we can construct a
map χJ that sends quaternion elements in B×p,∞ to ideals. On input α ∈ B×p,∞, it is defined as

(3.5) χJ(α) := J
α

nrd(J)
.

Then, I = χJ(α) is an ideal of norm nrd(α)/nrd(J). For α ∈ J\{0}, the ideal I is equivalent to
J . In fact, ideals equivalent to J are precisely the ideals χJ(α) with α ∈ J\{0}.

3.2 The Deuring Correspondence

In 1941, Deuring [133] showed that, for a supersingular elliptic curve E defined over Fp, the
endomorphism ring of E is isomorphic to a maximal order O in Bp,∞. In this section, we describe
this correspondence in more detail. For a modern reformulation of the Deuring correspondence
and proofs of the statements in this section, we refer to Voight [316, Chapter 42] or Waterhouse
[317].

We first demonstrate the Deuring correspondence through an example.

Example 3.2.1. Let p ≡ 3 mod 4 and consider the elliptic curve E0 : y
2 = x3 + x defined over

Fp2 with j(E0) = 1728. Then End(E0) is isomorphic to the maximal order O0 =
〈
1, i, i+j2 , 1+k2

〉
in Bp,∞ via the isomorphism

O0
∼−−→ End(E0)

α = x+ yi+ zj + wk 7−→ θ = x+ yι+ zπ + wιπ

where x, y, z, w ∈ Z, π : (x, y) 7→ (xp, yp) is the p-power Frobenius endomorphism on E0, and
ι : (x, y) 7→ (−x,

√
−1y).

The elliptic curve E0 is somewhat special as we were able to explicitly compute its endomor-
phism ring End(E0) and construct the isomorphism to a maximal order O0 in Bp,∞. In general,
given a supersingular elliptic curve, it is conjecturally hard to compute its endomorphism ring
End(E). In fact, the hardness of this problem underlies the security of many cryptographic schemes
constructed with isogenies. We discuss this in greater depth in Section 4.3. Conversely, given a
maximal order O, we can recover the corresponding elliptic curve E in polynomial time by taking
advantage of the few supersingular curves whose endomorphism rings are known. For example, we
could use [147, Algorithm 12].

The Deuring correspondence extends beyond this. It is in fact an equivalence of categories,
meaning that there is furthermore a correspondence between the morphisms of each object: iso-
genies and ideals. Given a supersingular curve E, we can associate each pair (E′, φ), where E′ is

70

another supersingular elliptic curve and φ : E → E′ is an isogeny, to a left integral O0-ideal, where
End(E0) ∼= O0. Furthermore, every such ideal arises in this way.

Remark 3.2.2. We identify α ∈ O0 as an endomorphism of E0 via the explicit isomorphism
O0
∼= End(E0) given in Example 3.2.1. When given an isogeny φ : E0 → E corresponding to a

(O0,O)-ideal I, the isomorphism O0
∼= End(E0) naturally induces an isomorphism O ∼= End(E).

In these cases, we do not explicitly give the isomorphism and use the implicitly defined isomorphism
O ∼= End(E).

The correspondence is defined using kernel ideals (see, for example, [317, §3.2]). Given a O0-
ideal I of norm coprime to p, we define

E[I] := {P ∈ E | α(P) = 0E ∀α ∈ I} =
⋂
α∈I

kerα ⊂ E,

to be the kernel of I. By Remark 3.1.8, we can write I = O⟨α,N⟩ where nrd(I) = N , and we
have E[I] = ker(α)∩E[N] [316, §42.2.1]. Given such an I, we denote the corresponding separable
isogeny with kernel E[I] by φI . Conversely, given a separable isogeny φ from E, the corresponding
ideal is

Iφ = {α ∈ O | α(P) = 0E ∀P ∈ kerφ}.

The isogeny φ is an endomorphism if and only if Iφ is a principal ideal.
This correspondence is also compatible with a number of properties of ideals and isogenies.

Firstly, it is compatible with the ‘size’ of the maps, in the sense that deg(φ) = nrd(Iφ) [317,
Theorem 3.15]. Further to this, letting φ : E1 → E2 be an isogeny, we have Iφ̂ = Iφ. If ψ : E1 → E2

is another isogeny, then Iψ◦φ = Iφ · Iψ. As a consequence, if we have two isogenies φ : E → E′ and
ψ : E → E′ then the corresponding ideals are equivalent Iφ ∼ Iψ (as defined in Section 3.1.1.2).
The converse statement can be found in [316, Lemma 42.2.7].

The correspondence given above is largely theoretical, and it still remains unclear whether it
can be made effective. To build cryptographic schemes using the Deuring correspondence, we need
efficient algorithms that will translate between isogenies of supersingular elliptic curves and ideals
connecting maximal orders in Bp,∞. The following two sections will be dedicated to exhibiting
algorithms that enable us to perform the translation efficiently. We introduce them within the
context of the isogeny-based signature scheme SQIsign [125, 126], but note that the ideas in these
algorithms appeared already in [147, 174, 203].

3.2.1 Converting O0-ideals to isogenies

The simplest translation from ideals to isogenies is when I is a O0-ideal, and the corresponding
isogenies can be defined over Fp2 using both quadratic twists of E0. We detail the algorithm
IdealToIsogenyD for ideals of norm dividing D fully in Algorithm 3.1. It terminates in O(

√
D)

operations over the field of definition of E0[D] [217, §4.2.1], where O0
∼= End(E0), which for this

section we assume to be Fp2 . In Chapter 11, we will adapt this algorithm to handle cases where
E0[D] is defined over an extension field of Fp2 .

Suppose we would like to translate the O0-ideal I = O0⟨α,D⟩. The main idea of the algorithm

71

is to find the action of the endomorphism

α = x2 + x2i+ x3
i+ j

2
+ x4

1 + k

2
, xi ∈ Z,

on a fixed basis of PD, QD ∈ E[D], from which we can recover ker(α) ∩ E[D]. Explicitly, let
Mi,M i+j

2
,M 1+k

2
be the action of i, i+j2 , 1+k2 , respectively. We recover the action Mα ∈ M2(Z/DZ)

as
Mα := x1I+ x2Mi + x3M i+j

2
+ x4M 1+k

2
,

and then compute some vector [a, b]T ∈ kerMα. This will give the corresponding generator
[a]PD + [b]QD of the kernel, from which we compute the isogeny φI .

Algorithm 3.1 IdealToIsogenyD(I)

Input: I, a left O0-ideal of norm dividing D.
Output: The corresponding isogeny φI .

1: Compute α such that I = O0⟨α,nrd(I)⟩
2: Let A = [1, i, i+j2 , 1+k2] denote a basis of O0

3: Compute vα := [x1, x2, x3, x4]
T ∈ Z4 such that Avα = α

4: Mα := x1I+ x2Mi + x3M i+j
2

+ x4M 1+k
2

5: Compute [a, b]T ∈ kerMα

6: KD := [a]PD + [b]QD
7: Set ϕI to be the isogeny generated by the point KD.
8: return φI

3.2.2 Converting O-ideals to isogenies

The algorithm we presented in Section 3.2.1 works only for special orders, and is therefore quite
restrictive. However, the ideal-to-isogeny algorithm IdealToIsogeny can be extended to work for a
O-ideal of ℓ-power norm for a prime ℓ. This algorithm, IdealToIsogenyEichler, was introduced by De
Feo, Leroux, Longa, and Wesolowski [126, §4] (as an improvement to [125, Alg. 8]). It is used in
the key generation and signing algorithms of SQIsign.

To fix an isomorphism O ∼= End(E), we require the knowledge of a connecting (O0,O)-ideal and
the corresponding isogeny, which will allow us to transfer the known isomorphism O0

∼= End(E0),
as described in Remark 3.2.2. Given a left O-ideal I of large prime power norm ℓe, a (O0,O)-ideal
J of ℓ-power norm and corresponding isogeny φJ : E0 → E, IdealToIsogenyEichler outputs φI of
degree ℓe.

When the norm ℓe is large, we may not have Fp2-rational ℓe-torsion on E (or its quadratic
twist). As a result, the elliptic curve operations in the ideal-to-isogeny translation would need to
be done over a field extension. Instead, we perform the translation in steps of size ℓf , with e = gf

and where the ℓf -torsion is Fp2-rational. Namely, we split up the ideal I into g ideals Ii of norm
ℓf and translate these ideals to isogenies φIi such that φI = φIg ◦ · · · ◦ φI2 ◦ φI1 .

To translate left O-ideals I of norm ℓf to an isogeny, we need to understand how a special
endomorphism θ ∈ End(E) acts. We choose this endomorphism in such a way that P and θ(P)

72

generate the ℓf -torsion for some input point P ∈ E[ℓf], and the kernel generator of φI can be
constructed from these generators. The precise conditions placed on θ for this to be satisfied are
given in [126, Lemma 8]. Most notably, the endomorphism θ is of order T 2 where T ≈ p5/4 is
coprime to ℓ. Viewing θ as an element of O, to evaluate θ we decompose it into two ideals of
norm T , and convert these into isogenies of degree T using two executions of IdealToIsogenyT . For
precise details of this algorithm and a proof of its correctness, we refer to [126, §4].

The main takeaways from this section are as follows. Firstly, the only subroutine involving
elliptic curve operations is IdealToIsogenyT . This will be important for Chapter 11 when we look
at how to modify this to allow our elliptic curve points to be defined over field extensions Fp2k .
Secondly, the bottleneck of this procedure is the computation of Fp2 -rational T -isogenies, where T
is as before. This will be important for Chapter 10 when this condition will impose restrictions on
SQIsign-friendly parameters.

3.2.3 Converting isogenies to ideals

Translating isogenies to their corresponding ideals is comparatively easy. Consider the elliptic
curve E with endomorphism ring End(E) ∼= O. We want to find the O-ideal corresponding to the
isogeny φ : E → E/⟨P ⟩ with kernel generated by a point P ∈ E[N]. To do so, we first compute a
basis {θ1, θ2, θ3, θ4} of End(E), where each θi has norm coprime to N . We then find i, j such that
θi(P), θj(P) is a basis of E[N]. Taking k ̸= i, j, we compute a, b such that

θk(P) = [a]θi(P) + [b]θj(P).

The endomorphism α = θj − aθi − bθj sends the point P to the identity, and I = O⟨α,N⟩ is
the O-ideal corresponding to φ, where we view α as an element in Bp,∞ via the isomorphism
End(E) ∼= Bp,∞. For a proof of this fact, see [217, Lemma 4.2.2].

Example 3.2.3. Consider the supersingular elliptic curve E0 : y2 = x3 + x with j(E0) = 1728,
defined over F232 = F23(i) with i2+1 = 0. Then, as shown in Example 3.2.1, End(E0) ∼= O0 where
O0 = ⟨1, i, i+j2 , 1+k2 ⟩. In this case, we fix the choice θ = j + 1+k

2 and η = i.

As we need the maximal order O ∼= End(E) to perform this conversion, if j(E) ̸= 1728 then
again we require knowledge of an isogeny φ : E0 → E. We summarise the effective Deuring
correspondence in Figure 3.1.

73

Maximal order O in Bp,∞ E/Fp2 supersingular

Integral ideal O1-ideal I
and right O2-ideal

Isogeny φ : E1 → E2

with End(Ei) ∼= Oi

nrd (I)
I

Iφ · Iψ

deg(φ)
φ̂

ψ ◦ φ

Figure 3.1: A summary of the effective Deuring correspondence using the current state-of-the-art algo-
rithms. Arrows in green indicate when there is an efficient algorithm to compute the correspondence. The
arrow in red is only computable in exponential time.

74

Chapter 4

Isogenies in cryptography

The use of isogenies in post-quantum cryptography was introduced by Couveignes [108] and inde-
pendently rediscovered by Rostovtsev and Stolbunov [275], who considered ordinary elliptic curves
defined over Fq (for q some power of prime p) and isogenies between them. Later, De Feo, Jao, and
Plût [123] introduced a key-exchange protocol Supersingular Isogeny Diffie–Hellman (SIDH), and
corresponding key encapsulation mechanism SIKE. Here, a different setting was used: supersingu-
lar elliptic curves over Fp2 , first introduced to cryptography by Charles, Goren and Lauter [76].
It offers two main advantages. Firstly, every supersingular elliptic curve is isomorphic to a curve
E defined over Fp2 . Secondly, for any supersingular elliptic curve E, given a prime N , we can
straightforwardly enforce the N -isogenies to be Fp2-rational. In this way, all arithmetic is effi-
ciently computable over Fp2 (and no larger extension).

In this thesis, we focus solely on the supersingular setting. More generally, we work with
superspecial principally polarised abelian varieties, a natural generalisation of supersingular elliptic
curves to higher dimensions. In this setting, the security of isogeny-based cryptography rests on
the hardness of finding an isogeny between two superspecial p.p. abelian varieties, conjectured to
be hard for both classical and quantum computers. As such, isogenies are a promising candidate
for the construction of post-quantum secure cryptoschemes.

Throughout this chapter, we fix k to be a finite field Fq of prime characteristic p > 5.

4.1 Superspecial abelian varieties

We follow the methodology introduced by Castryck, Decru, and Smith [72, §2], who argue that, for
cryptographic applications involving higher dimensional p.p. abelian varieties, the correct gener-
alisation of supersingularity is superspeciality. The aim of this section is to introduce superspecial
p.p. abelian varieties from a cryptographic perspective. For a more extensive survey of superspecial
abelian surfaces, see Brock’s thesis [52].

We motivate the notion of superspeciality by first considering the dimension-1 case. Recall
from Definition 2.9.5, that an elliptic curve E/Fq is supersingular if it has no non-trivial p-torsion.
We observe, however, that there are many alternative definitions of supersingularity.

Lemma 4.1.1. Let E be an elliptic curve defined over Fq of prime characteristic p. The following
are equivalent:

(a) tr πE ≡ 0 mod p, where πE is the q-power Frobenius endomorphism.

(b) E[p] = {0E}.

75

(c) [p] : E → E is purely inseparable.

(d) The endomorphism ring End(E) is a maximal order in the quaternion algebra Bp,∞.

If an elliptic curve E satisfies the properties above, we say E is supersingular.

Proof. A proof of the equivalence (b) ⇐⇒ (c) ⇐⇒ (d) can be found in [292, Theorem V.3.1].
The equivalence (a) ⇐⇒ (b) is in the proof of [292, Theorem V.4.1].

The alternative definitions for supersingularity in Lemma 4.1.1 generalise to distinct properties
when considering abelian varieties of higher dimension.

Definition 4.1.2. Let E/Fp be a supersingular elliptic curve. We say a p.p. abelian variety
A/Fq of dimension g is supersingular if it is Fp-isogenous (as an unpolarised abelian variety) to
Eg := E × · · · × E. We say A is superspecial if it is Fp-isomorphic (as an unpolarised abelian
variety) to Eg. For g = 2, we say a genus-2 curve C is supersingular or superspecial, if its Jacobian
JC is.

An alternative definition for a superspecial p.p. abelian variety A/Fq of dimension g is that its
Hasse–Witt matrix M ∈ Fg×gq vanishes identically [52, Theorem 2.3A]. The matrix M characterises
how the Frobenius map acts on A.1 For g = 1, M is a 1× 1 matrix consisting of an element m1,
where m1 ≡ a mod p for a the trace of Frobenius πA. In this way, this definition is a natural
generalisation of the property given in Item (a) of Lemma 4.1.1 for elliptic curves. For genus-2
curves y2 = f(x), we have M = (mij)1≤i,j≤2 with

mij = f
(p−1)/2
pi−j mod p,

where fnk denotes the coefficient of xk in f(x)n [52, Corollary 2.11]. If A is superspecial, then it is
supersingular. The converse is false in dimension g ≥ 2. For dimension g ≤ 2, the supersingularity
condition is equivalent to A having no non-trivial p-torsion, thus generalising the property given
in Item (b) of Lemma 4.1.1 [255, §4]. However, supersingularity becomes a stronger notion in
dimension g > 2.

In isogeny-based cryptography, we mostly work with superspecial abelian varieties of dimension
g = 1 and 2, and isogenies between them. This is enabled by the fact that being superspecial is
a property which is invariant under (polarised) isogeny. Namely, if A1/Fq is a superspecial p.p.
abelian variety, and φ : A1 → A2 is an isogeny (of p.p. abelian varieties) of degree coprime to p,
then A2 is also superspecial. We prove the case g = 1 below. The case g = 2 may be found in [52,
Lemma 2.2A].

Proposition 4.1.3. Let φ : E1 → E2 be an isogeny of elliptic curves E1, E2 defined over Fq of
characteristic p. Then E1 is supersingular if and only if E2 is supersingular.

Proof. Suppose E1 is supersingular. By Lemma 4.1.1, we have trE1
≡ 0 mod p, and so Remark 2.9.3

tells us #E1(Fq) ≡ 1 mod p. By Tate’s theorem, E2 has order #E2(Fq) = #E1(Fq) ≡ 1 mod p,
and is therefore supersingular (again by Lemma 4.1.1). Noting that φ̂ : E2 → E1 is an isogeny,
changing the roles of E1 and E2, we get the converse implication: E1 is supersingular if E2 is.

1More precisely, M represents the action of the Frobenius operator on the cohomology group H1(A,OA) with
respect to some basis, where OA is the structure sheaf.

76

With the construction of efficient protocols in mind, the reason for working with superspecial p.p.
abelian varieties A in cryptography is two-fold. Firstly, the following theorem shows us that every
superspecial p.p. abelian variety admits a model over Fp2 , a necessary condition for the arithmetic
to be performed over Fp2 .

Theorem 4.1.4. Let A/Fpk be superspecial p.p. abelian variety of dimension g. Then A is Fp-
isomorphic to a superspecial p.p. abelian variety defined over Fp2 .

Proof. We follow Silverman [292, Theorem V.3.1] to prove this for the case g = 1. For g ≥ 2,
a proof can be found in [186, Theorem 1]. Let A/Fpk be a supersingular elliptic curve. Let
π : A → A(p) be the p-power Frobenius, and π̂ : A(p) → A its dual (called the Verschiebung). As
A is supersingular, the Verschiebung π̂ is purely inseparable. By [292, Corollary II.2.12], it factors
as

A(p) A(p2) Aπ′

π̂

ψ

where π′ is the p-power Frobenius map on A(p) and ψ is a (seperable) isogeny of degree one.
Therefore, ψ is an isomorphism and so j(A) = j(A(p2)) = j(A)p

2

, implying that j(A) ∈ Fp2 . Let
j = j(A) ∈ Fp2 and consider the elliptic curve

E : y2 = x3 +
3j

1728− j
x+

2j

1728− j
,

when j ̸= 0, 1728, E : y2 = x3 + 1 for j = 0, and E : y2 = x3 + x for j = 1728. Then, E is defined
over Fp2 and j(E) = j, so A ∼= E over Fp.

A second important feature of superspecial p.p. abelian varieties is that we can straightforwardly
write down the order #A(Fq). We concentrate first on exhibiting this in the case g = 1.

Proposition 4.1.5. Let E be a supersingular elliptic curve defined over Fp2 with p > 5. Then we
have

#E(Fpk) =

pk + 1, when k is odd

pk + 1, pk ± pk/2 + 1 or (pk/2 ± 1)2, when k is even
.

Proof. We have #A(Fpk) = pk+1−a where a is the trace of the pk-power Frobenius endomorphism
on A. By a result of Waterhouse [317, Theorem 4.1]: (a) if k is even, then a = ±2

√
pk, or a = ±

√
pk

and p ̸≡ 1 mod 3, or a = 0 and p ̸≡ 1 mod 4; (b) if k is odd, then a = 0. From this we get the
values for #A(Fpk) in the statement of the proposition.

Every supersingular elliptic curve admits a model such that the p2-power Frobenius endomorphism
π is equal to the multiplication-by-(−p) map. Such elliptic curves E are Fp2 -isogenous to elliptic
curves defined over Fp [292, Ex. 5.15] and satisfy

(4.1) E(Fp2k) = Z/(pk − (−1)k)Z⊕ Z/(pk − (−1)k)Z,

while their quadratic twist over Fp2k , denoted Etk, satisfies

(4.2) Etk(Fp2k) = Z/(pk + (−1)k)Z⊕ Z/(pk + (−1)k)Z.

77

For any prime N | pk±1, the full N -torsion group E[N] is defined over Fp2k , either on the curve or
on its twist. As a result, we can ensure that isogenies of degree N are Fp2k -rational. For example,
say we start with a supersingular elliptic curve E1/Fp2 with #E1(Fp2) = (p+1)2. Choosing p such
that 3 | p+ 1, we can compute an Fp2-rational 3-isogeny φ : E1 → E2. By Tate’s isogeny theorem
in Theorem 2.9.1, #E2(Fp2) = (p+ 1)2, and so we can compute Fp2 -rational 3-isogenies from E2,
and so on. In this way, a simple choice of p ensures we can compute chains of Fp2 -rational isogenies
from any starting curve with order (p+ 1)2.

Costello [99] gives a framework to work on a supersingular elliptic curve and its twist, meaning
that we can compute Fp2 -rational isogenies for any prime N dividing p± 1. Let γ be a non-square
in Fp2 , and let δ2 = γ so that Fp4 = Fp2(δ). Recall from Section 2.2.3 that E(Fp4) is isomorphic to
Et(Fp4) via the map (x, y) 7→ (x, δy), which leaves the x-coordinate unchanged. Costello [99, §3]
details how x-only arithmetic can therefore be used to perform isogeny computations on a curve
and its twist at no extra cost.

We now consider dimension g = 2. Every superspecial p.p. abelian variety has a model defined
over Fp2 , see [186, Theorem 1]. Furthermore, by definition of superspeciality, the p.p. abelian
surface A is Fp-isomorphic to E × E for some supersingular curve E (as an unpolarised abelian
variety). As such, every superspecial abelian surface admits a model A/Fp2 with #A(Fp2) =

(p+ 1)4, and
A(Fp2) ∼= (Z/(p+ 1)Z)4 .

If N | p+1 for prime N , this implies A has full Fp2 -rational N -torsion. It follows that when p ̸= 2,
A automatically has full Fp2-rational 2-torsion. In particular, if A is the Jacobian of a genus-2
hyperelliptic curve C, this means that C can be put in Rosenhain form.

From the discussion above, we can construct efficient protocols from superspecial p.p. abelian
varieties of dimension 1 and 2 and their isogenies using arithmetic solely over Fp2 , rather than
taking arbitarily large extensions of Fp.

Beyond efficiency, for cryptographic applications we require a hard problem from which to base
the security of our protocols. Superspecial abelian varieties also naturally offer such a problem:
the dimension-g superspecial isogeny problem.

Problem. Given a pair of superspecial p.p. abelian varieties A1 and A2 of dimension g defined
over Fp2 , find a polarised Fp-isogeny A1 → A2.

We will revisit this problem in Section 4.3 and study it in greater depth. Before doing so, we
introduce the superspecial isogeny graph.

4.2 The superspecial isogeny graph

An important object in isogeny-based cryptography is the dimension-g superspecial isogeny graph,
whose vertex set Sg(Fp) is the set of isomomorphism classes of superspecial p.p. abelian varieties
of dimension g defined over Fp, and its edge set contains (N, . . . , N)-isogenies (up to composition
by an isomomorphism). Throughout we will only be considering the case where N is coprime to
p. By solely studying the expansion properties of this graph, we can obtain some insight into
the hardness of finding isogenies between p.p. abelian varieties. However, as we will show in

78

Section 4.3.1 and Section 4.3.2, by exploiting the special structure of this graph arising from the
geometric nature of abelian varieties we can obtain new, more efficient attacks against the isogeny
problem. Improving these attacks will be the main focus of Chapters 7 and 8. In this section, we
explore the superspecial isogeny graph and discuss what is already known about its structure. We
first motivate the definitions in this section through an example in dimension 1.

Example 4.2.1. Let g = 1 and consider X1(F127, 2), the supersingular 2-isogeny graph for p =

127 = 27 − 1, given in Figure 4.1. We label each edge by the j-invariant corresponding to the
Fp-isomorphism class of supersingular elliptic curves defined over F1272 = F127(i) where i is a root
of x2 + 1 ∈ F127[x]. In this case, there are 11 distinct j-invariants.

Figure 4.1: The graph X1(F127, 2), where F1272 = F127(i) where i is a root of x2 + 1 ∈ F127[x].

We first observe that there exists a path between any two vertices. We will see that this remains
a property for general degree N in dimensions g = 1 and 2: the graph Xg(Fp, N) is connected.
Furthermore, for all but one vertex, the graph is 3-regular and undirected: given a 2-isogeny
ϕ : E → E′, there exists a 2-isogeny from E′ to E given by the dual isogeny ϕ̂ : E′ → E.

The exception occurs at the vertex with label j = 1728 ≡ 77 mod 127 due to extra automor-
phisms on the corresponding elliptic curve. All supersingular elliptic curves E ∈ S1(Fp) have
the automorphism [−1] : (x, y) 7→ (x,−y). However, the elliptic curve E77 : y

2 = x3 + x with
j(E77) = 77 has an extra automorphism ι : (x, y) 7→ (−x, iy).

Figure 4.2: A look at the node j = 77, corresponding to elliptic curve E77, in the graph X1(F127, 2).

In Figure 4.2, we zoom into the neighbourhood of this vertex and observe the following. There
are two edges from j(E77) to j(E95), corresponding to the 2-isogenies

E77 → E77/⟨(i, 0)⟩ ∼= E95, and E77 → E77/⟨(−i, 0)⟩ ∼= E95.

79

The extra automorphism of E77 maps the 2-torsion point (i, 0) to a distinct point (−i, 0) of order 2.
As E77/⟨ι(i, 0)⟩ ∼= E77/⟨(i, 0)⟩, the automorphism ι gives rise to two distinct isogenies E77 → E95.
However, there is only one edge from j(E95) to j(E77), corresponding to the 2-isogeny E95 →
E95/⟨(0, 0)⟩ ∼= E77. Indeed, E95 only has non-trivial automorphism [−1], but [−1]⟨(0, 0)⟩ = ⟨(0, 0)⟩
and so it does not generate a distinct isogeny.

To account for this imbalance, we assign weights on the edges of the graph; in Figure 4.1, all
edges have weight 1, except for the edge E77 → E96 which has weight 2.

For general dimension g and degree N , Florit and Smith [155] show that automorphisms play
an important role in the structure of the graph Xg(Fp, N). Indeed, automorphisms are the source
of vertices where the isogeny graph is directed, which in turn results in non-trivial weights on edges
in the neighbourhood of this vertex.

Keeping the previous example in mind, we give a more precise definition of the superspecial isogeny
graph.

Definition 4.2.2. Fix a positive integer g and a prime p. The superspecial (N, . . . , N)-isogeny
graph, denoted Xg(Fp, N), is the directed weighted multigraph defined as follows.

• The vertices are isomomorphism classes of superspecial p.p. abelian varieties of dimension g
defined over Fp, denoted Sg(Fp).

• The edges are isomorphism classes of (N, . . . , N)-isogenies, weighted by the number of distinct
kernels yielding isogenies in the class. We denote the weight of an edge φ by w(φ).

Since every superspecial p.p. abelian variety admits a model over Fp2 , the set Sg(Fp) is finite. In
particular, #S1(Fp) = O(p) and #S2(Fp) = O(p3). Define the out-degree of a vertex A ∈ Sg(Fp) to
be the total sum of the weights of edges leaving A. The graph Xg(Fp, N) is regular, meaning that
every vertex has the same out-degree. Jordan and Zaytman [194] showed further that Xg(Fp, N) is
connected, i.e., there exists a path between any two vertices in the graph. We remark that a proof
of this was already given implicitly in a different language by Oort [254].

We now discuss more formally how automorphisms give rise to non-trivial weights in the isogeny
graph. We first observe that every p.p. abelian variety has a non-trivial automorphism [−1].
However, [−1] fixes every kernel and commutes with every isogeny. Therefore, it does not have an
impact on the edge weights in the isogeny graph. Therefore, we can simplify by considering the
reduced automorphism group defined as RA(A) := Aut(A)/⟨±1⟩.

Let φ : A→ A/K be an isogeny of p.p. abelian varieties and α ∈ RA(A) of degree N coprime
to p. Suppose K ̸= α(K) and let φ′ : A→ A/α(K). The automorphism α induces an isomorphism
α∗ : A/K

∼−→ A/α(K). Let φα = α−1
∗ ◦φ′. Then, φ and φα are isogenies of degree N with the same

domain and codomain, but distinct kernel. Therefore, the edge A → A′ ∼= A/K has non-trivial
weight. On the other hand, φ̂ and φ̂α have the same kernel, and so the automorphism α ∈ Aut(A)

has no impact on the weight of the edge A′ → A.

Example 4.2.3. To illustrate the definitions introduced above, we look more deeply at g = 2 and
follow the example of the graph X2(F11, 2) due to Florit and Smith [155, Example 3.3]. There are
5 vertices (up to F11-isomorphism):

80

• A1 = JC1 , the Jacobian of C1 : y
2 = x6 − 1 with #RA(A1) = 12,

• A2 = JC2 , the Jacobian of C2 : y
2 = (x3 − 1)(x3 − 3) with #RA(A2) = 6,

• A3 = E1728 × E1728 with #RA(A3) = 16,

• A4 = E0 × E0 with #RA(A4) = 36,

• A5 = E0 × E1728 with #RA(A5) = 12.

We illustrate this in Figure 4.3.

Figure 4.3: The graph X2(F11, 2) with weights on the edges. Note that the out-degree of each vertex is
15.

Though not apparent in the example above (due to p being very small), for cryptographic-sized
primes p the number of vertices A with non-trivial RA(A) is negligible for low dimension cases
g = 1 and 2. Therefore, for our purposes it suffices to treat Xg(Fp, N) as an undirected, regular
graph.

4.2.1 The graph in dimension one

Consider the set of Fp-isomorphism classes of supersingular elliptic curves S1(Fp) labelled by their
j-invariant. For supersingular elliptic curve E we have j(E) ∈ Fp2 , therefore S1(Fp) is finite. The
precise size of this set is given by the following theorem due to Igusa [189].

Theorem 4.2.4. For p ≥ 5, we have #S1(Fp) = ⌊p/12⌋+ b where

b =

0 if p ≡ 1 mod 12

1 if p ≡ 5, 7 mod 12

2 if p ≡ 11 mod 12

.

Proof. We follow the proof of [292, Theorem V.4.1(c)]. For p ≥ 5, every elliptic curve is isomorphic
to one defined by the equation E : y2 = x(x − 1)(x − α), where α ∈ Fp with α ̸= 0, 1. By [292,

81

Theorem V.4.1(b)], we see that E is supersingular if and only if Hp(α) = 0 where

Hp(t) =

(p−1)/2∑
i=0

(
m

i

)2

ti.

By direct computation, we find that the roots of Hp(t) are distinct, and each root α gives a
supersingular elliptic curve Eα. It remains to determine which of the resulting Eα are isomorphic.
The j-invariant map

α 7→ j(Eα)

is six-to-one except over j = 0 and j = 1728 where it is two-to-one and three-to-one, respec-
tively [292, Theorem III.1.7]. Furthermore, if Hp(α) = 0, then for every α′ satisfying j(α) = j(α′)

we have Hp(α
′) = 0, since Eα ∼= Eα′ . Defining

δp(j) :=

1, if an elliptic curve E with j = j(E) is supersingular

0, if an elliptic curve E with j = j(E) is ordinary
,

we have #S1(Fp) = 1
6

(
p−1
2 − 2δp(0)− 3δp(1728)

)
= p−1

12 −
1
3δp(0)−

1
2δp(1728). We compute that

δp(0) =

1, if p ≡ 2 mod 3

0, if p ≡ 1 mod 3
and δp(1728) =

1, if p ≡ 3 mod 4

0, if p ≡ 1 mod 4
.

For example, see [292, Example V.4.4] and [292, Example V.4.5], respectively. Taking the four
possibilities for p mod 12, we get the statement of the theorem.

For p > 3, if E/Fp has j(E) ̸= 0, 1728 then #RA(E) = 0 [292, Theorem III.10.1]. Therefore, the
only elliptic curves that have non-trivial reduced automorphism groups are those with j-invariant
0 or 1728. The proof of Theorem 4.2.4 shows that the values of p mod 12 also indicate which
supersingular isogeny graphs may have vertices j(E) with non-trivial RA(E). Consider first E0 :

y2 = x3 + 1 with j(E0) = 0. The curve E0 has an extra automorphism (x, y) 7→ (ω2x,−y), where
ω is a primitive third root of unity, and so RA(E0) ∼= Z/3Z. Similarly, recall from Example 4.2.1,
that E1728 : y2 = x3 + x with j(E1728) = 1728 has an extra automorphism (x, y) 7→ (−x, iy) and
RA(E1728) ∼= Z/2Z. Therefore, it suffices to determine when E0 and E1728 are supersingular. By
the proof of Theorem 4.2.4, E0 is supersingular if and only if p ≡ 2 mod 3 and E1728 if and only
p ≡ 3 mod 4.

In summary, except for the vertices j ∈ {0, 1728}, which occur depending on the value p mod 12,
and their edges, the graph X1(Fp, N) is undirected. As #S1(Fp) = O(p), the ‘directedness’ only
occurs at one or two vertices in S1(Fp), and for our purposes, we can ignore it. For example, when
discussing the distribution of random walks on our graph, we treat X1(Fp, N) as an undirected
graph, and study the distribution in a neighbourhood of these special vertices separately.

The graph X1(Fp, N) is connected [232] and DN,1-regular where DN,1 is as defined in Equa-
tion (2.7). Furthermore, the graph X1(Fp, N) has optimal expansion.

Theorem 4.2.5. For prime N ̸= p, the graphs X1(Fp, N) are Ramanujan, i.e., the second largest
eigenvalue of its adjacency matrix is smaller (in absolute value) than 2

√
N .

82

Proof. See [261, Proposition 3].

Theorem 4.2.5 shows that X1(Fp, N) is an expander graph as p→∞. This is an important property
in cryptography as it means we have fast mixing; concretely, we only have to take a relatively short
walk (of length O(log(p))) until we land on a near uniform random node.

With Chapter 7 in mind, we note that the set S1(Fp) can be partitioned into two distinct
subsets:

Sp2 := {j | j = j(E) for E ∈ S1(Fp) and j ∈ Fp2\Fp},

Sp := {j | j = j(E) for E ∈ S1(Fp) and j ∈ Fp}.
(4.3)

As demonstrated by the following proposition, we have #Sp = Õ(p1/2).

Proposition 4.2.6. For a prime p > 3 we have

#Sp =

1
2h(−4p) if p ≡ 1 mod 4

h(−p) if p ≡ 7 mod 8

2h(−p) if p ≡ 3 mod 8

,

where h(d) is the class number of the imaginary quadratic field Q(
√
d). In particular, #Sp =

Õ(p1/2).

Proof. When E is a supersingular elliptic curve, Proposition 4.1.5 tells us that #E(Fp) = p + 1.
The formula for #Sp then follows from [111, Theorem 14.14] with a = 0.

The class number of an imaginary quadratic field Q(
√
d) is bounded as h(d) ≤ 1

π

√
D ln(D) [84,

Exercise 5.27]. Here D = d if d ≡ 1 mod 4, and D = 4d, otherwise. This gives #Sp = Õ(p1/2).

For Chapter 7, it will be important to understand the ratio of nodes in Sp to nodes visited
while performing a random walk on X1(Fp, N). Using the sizes of Sp2 and Sp, and the optimal
expansion of the graph, the expected number of randomly chosen elements in Sp2 we would have
to sample before finding one in Sp is Õ(p1/2).

4.2.2 The graph in dimension two

We now turn to the dimension-2 superspecial isogeny graph. The vertex set S2(Fp) is composed
of Fp-isomorphism classes of superspecial p.p. abelian surfaces. As described in Section 2.5, every
p.p. abelian surface is isomorphic to either the Jacobian of a curve of genus 2, or to a product of
two elliptic curves. In the latter case, if the abelian surface is superspecial, then the elliptic curves
will be supersingular. Therefore, S2(Fp) is equal to the disjoint union of the following two sets:

(4.4)
J2(Fp) := {A ∈ S2(Fp) : A ∼= Jac(C) for some genus-2 curve C},

E2(Fp) := {A ∈ S2(Fp) : A ∼= E1 × E2 for some E1, E2 ∈ S1(Fp)},

where the isomorphisms are of p.p. abelian varieties over Fp. As S2(Fp) is finite, so are the sets
J2(Fp) and E2(Fp).

83

Proposition 4.2.7. Let p > 5. With notation as above, we have

#J2(Fp) =
1

2880
p3 +O(p2) and #E2(Fp) =

1

288
p2 +O(p).

Proof. We follow Castryck, Decru, and Smith [72, Proposition 2]. From Theorem 4.2.4, we know
that up to Fp-isomorphism, the number of supersingular elliptic curves is p−1

12 + b for b ∈ [0, 76]

(depending only on p mod 12). Therefore,

#E2(Fp) =
1

2
· p− 1

12
· p− 1

12
+O(p) =

p2

288
+O(p),

as required. Then, by counting the number of superspecial genus-2 curves with certain reduced
automorphism groups, Ibukiyama, Katsura, and Oort [187, Theorem 3.3] show #J2(Fp) = 1

2880p
3+

O(p2), as required.

The graph X2(Fp, N) is DN,2-regular where DN,2 is as defined in Equation (2.8). Though cryp-
tographic primitives constructed using superspecial p.p. abelian surfaces, such as the Castryck–
Decru–Smith hash function [72], assume the rapid convergence of random walks in the graphs
X2(Fp, N) to the uniform distribution, it is important to note that these expansion properties are
not well understood. As we have discussed previously, the graphs X2(Fp, N) do not fit into the def-
inition of an expander graph as they are directed multigraphs. To understand the directed nature
of the graph, recall that we must understand the reduced automorphism groups of superspecial
p.p. abelian surfaces.

Proposition 4.2.8. Let A be a superspecial p.p. abelian surface. The number of A with #RA(A) =

0 is p3

2880 + O(p2). If, however, A ∈ E2(Fp) then Z/2Z ⊆ RA(A). The number of products A such
that RA(A) = Z/2Z is p2

288 +O(p).

Proof. The fact that C2 ⊆ RA(A) when A = E1 × E2 follows from the fact that RA(E1 × E2)

always contains the involution [1]E1 × [−1]E2 [155, §5.2]. The counts follow from Ibukiyama,
Katsura, and Oort [187].

As before, the set of surfaces A with non-trivial RA(A) is negligible in the vertex set S2(Fp),
and for our purposes it will be sufficient to simply ignore the directed nature of the graph. Florit
and Smith [155, §4.1-4.2] discuss formally how this can be achieved to obtain upper bounds on the
eigenvalues of these graphs to determine whether X2(Fp, N) is Ramanujan.

Jordan and Zaytman [194] show that X2(F11, 2) from Example 4.2.3 is not Ramanujan. Florit
and Smith provide evidence that the same is true for X2(Fp, 2) where 11 ≤ p ≤ 201, therefore
suggesting that the superspecial (2, 2)-isogeny graph fails to be Ramanujan as for larger primes
p [155, Appendix A]. Despite this, Florit and Smith conjecture [155, Conjecture 4.10] that the
family X2(Fp, N) still has “good enough” expansion for cryptographic purposes:

Conjecture 4.2.9. Let λN be the second largest eigenvalue of X2(Fp, N). Then there exists a fixed
L < 1 such that λN ≤ L, for every prime p ≥ 5. In particular, for every prime p ≥ 41 we have

11

15
≤ λ2 ≤

12

15
.

84

To make “good enough” more precise, Florit and Smith [155, Theorem 6.1] show that, assuming
this conjecture, a random walk of length n ≥ 4.5m log(p)+9 approximates the stationary distribu-
tion on X2(Fp, 2) with an error of 1/pm. More recently, Aikawa, Tanaka, and Yamauchi [2] showed
that X2(Fp, N) are expander graphs.

As we will see in Chapter 8, it is important to understand the ratio of nodes A ∈ E2(Fp) to
nodes visited while performing a random walk in X2(Fp, N). A natural first guess would be that
this ratio matches the proportion of such nodes in the entire graph, computed to be 10/p+O(1/p2)

using Proposition 4.2.7. However, from Proposition 4.2.8 we see that all but O(p) of the products
of elliptic curves have reduced automorphism group of order 2, and deduce that the expected
proportion of products in a random walk is ∼ 1

2 ·
10
p = 5

p [155, §6.2].

4.3 The general superspecial isogeny problem

The most general problem underlying the security of isogeny-based cryptography is the dimension-g
superspecial isogeny problem, defined as follows.

Problem 4.3.1 (The dimension-g superspecial isogeny problem). Given a pair of superspecial p.p.
abelian varieties A1 and A2 of dimension g defined over Fp2 , find a Fp-isogeny A1 → A2.

Alternatively, we can view the isogeny problem of dimension g as a path finding problem in the
superspecial isogeny graph Xd(Fp).

Problem 4.3.2 (The dimension d isogeny path problem). Given nodes A1 and A2 in Sg(Fp), find
a path in Xd(Fp) connecting them.

For g = 1, the graphs X1(Fp, N) with p ∤ N are Ramanujan. Viewing Problem 4.3.2 purely as a
graph theoretic problem, without any extra structure coming from the supersingular elliptic curves
and their isogenies, we expect the path-finding problem to be hard to solve. In light of results due
to Aikawa, Tanaka, and Yamauchi [2], we conjecture the same to be true for X2(Fp, N).

4.3.1 Algorithms for dimension 1

In dimension 1, Problem 4.3.1 underpins the security of all primitives in isogeny-based cryptography
constructed using supersingular elliptic curves over Fp2 . It is often referred to in the literature as
the general supersingular isogeny problem, or simply the general isogeny problem.

The best classical attack against this problem is due to Delfs and Galbraith [132] and runs in
Õ(p1/2). We want to find an isogeny φ : E → E′ between two supersingular curves, E/Fp2 and
E′/Fp2 with j-invariants in Sp2 . The key observation that leads to the Delfs–Galbraith algorithm
is that it is easier to find an isogeny between subfield curves, i.e., elliptic curves with j-invariant
in Sp. Therefore, rather than finding the isogeny φ directly, we search for subfield curves.

More explicitly, we perform simple non-backtracking random walks in X1(Fp, N) until hitting
an elliptic curve with j-invariant in Sp. Finding a walk from E/Fp2 to E1/Fp yields an isogeny
ψ : E → E1, and finding a walk from E′/Fp2 to E′

1/Fp yields an isogeny ψ′ : E′ → E′
1. A full

isogeny φ : E → E′ is then found as the composition φ = (ψ̂′ ◦ ϕ ◦ ψ), where ϕ : E1 → E′
1 is the

subfield isogeny that can be computed in Õ(p1/4) using [132, Algorithm 1].

85

From the discussion in Section 4.2, the number of elliptic curves with j ∈ Sp2 we expect to
search over before finding one with j-invariant in Sp is Õ(p1/2). Following Delfs and Galbraith
[132, Section 4], the steps taken in X1(Fp, N) are non-backtracking, meaning that one stores the
current j-invariant, jc, and the previous j-invariant jp. To take the next step, one then chooses
one of the DN,1 − 1 roots of

ΦN (X, jc)/(X − jp)

at random, where ΦN is the modular polynomial of level-N as defined in Section 2.8.1.1. Since N
and DN,1 are fixed and small, it follows that the asymptotic complexity of the search for subfield
j-invariants is Õ(p1/2). Therefore, the bottleneck in the Delfs–Galbraith algorithm is finding the
paths from curves with j ∈ Sp2 \ Sp to the curves with j ∈ Sp. In Chapter 7, we delve into the
Delfs–Galbraith algorithm in greater detail and improve its concrete complexity.

The best quantum attack, due to Biasse, Jao, and Sankar [33], runs in Õ(p1/4). The authors
adapt the Delfs–Galbraith algorithm in the context of quantum computation using the techniques
of Childs, Jao, and Soukharev [82]. More explicitly, by recasting the first step of finding an isogeny
between E and E1 as a search problem and applying Grover’s algorithm, they achieve a quadratic
speed-up.

4.3.2 Algorithms for dimension g ≥ 2

For g ≥ 2, the best classical and quantum attacks are due to Costello and Smith [107], and they
run in Õ(pg−1) [107, Theorem 1] and Õ(

√
pg−1) [107, Theorem 2], respectively.

We will depict the algorithm for g = 2, as this will be sufficient for our purposes. In this
case, Costello and Smith exploit the fact that finding isogenies between products of elliptic curves
is easier than the general problem. Therefore, rather than finding an isogeny between abelian
surfaces A and A′ ∈ J2(Fp) directly, we search for surfaces in E2(Fp).

Given two Fp-isomorphism classes of p.p. abelian surfaces A and A′ ∈ J2(Fp), we find paths
φ : A→ E1 × E2 and φ′ : A′ → E′

1 × E′
2, where E1 × E2, E

′
1 × E′

2 ∈ E2(Fp). As #J2(Fp) = O(p3)

and #E2(Fp) = O(p2), we expect to complete both of these steps using Õ(p) operations. We then
solve the dimension-1 isogeny problem using the Delfs–Galbraith algorithm on input E1 and E′

1

and on input E2 and E′
2 to output the paths ψ1 : E1 → E′

1 and ψ2 : E2 → E′
2 in X1(Fp). Both of

these steps terminate in Õ(p1/2).
If length(ψ1) ≡ length(ψ2) mod 2, we can use these to construct a product path π : E1 ×E2 →

E′
1 × E′

2, as described in [107, Lemma 3]. Otherwise, we fail and return ⊥. The desired path
between A and A′ is then ϕ := φ̂′ ◦ π ◦ φ.

Remark 4.3.3. Only three runs of this procedure are required to successfully return path ϕ.
Indeed, if we instead run the algorithm to find paths ψ1 : E1 → E′

1, ψ2,1 : E2 → E, and ψ2,2 : E →
E′

2, where E : y2 = x3+x has an endomorphism of degree 2, say τ , then we can set ψ2 = ψ2,2 ◦ψ2,1

if length(ψ1) ≡ length(ψ2,1 ◦ ψ2,2) mod 2 and ψ2 = ψ2,2 ◦ τ ◦ ψ2,1, otherwise.

Overall, the cost of the algorithm is Õ(p) bit operations. Chapter 8 will focus on the Costello–
Smith algorithm for g = 2, and improve its concrete complexity. Applying Grover’s algorithm
analogously to the dimension-1 case, we obtain a quantum algorithm that achieves a quadratic
speed-up in runtime.

86

Setting our prime to be of size p ≈ 2λ where λ is the security parameter, we see that the
dimension-g superspecial isogeny problem is a good candidate for a cryptographic hard problem.

4.3.3 The isogeny problem with fixed degree

In many cryptographic schemes, additional information is often known and the security of the
schemes is based on variants of Problem 4.3.1. A common restriction is requiring the solution to
have a specific degree (see for example [19, Problem 7]). The guaranteed existence of a solution
satisfying this additional constraint supplies more information about the problem to the attacker,
which may make it easier to solve.

Problem 4.3.4 (The dimension-g superspecial N -isogeny problem). Given a pair of isogenous
superspecial p.p. abelian varieties A1 and A2 of dimension g defined over Fp2 , find a Fp-isogeny
A1 → A2 of degree N .

We first consider the case g = 1. A common classical attack strategy is the generic meet-in-the-
middle attack. For simplicity of exposition, we assume we are given supersingular elliptic curves
E1, E2/Fp2 connected by an isogeny of degree Nk in X1(Fp) for some prime N . The more general
case, where the isogeny has smooth degree, follows similarly. This attack proceeds as follows.
Start by tabulating all possible walks of length ⌊k/2⌋ starting from E1. Then, iterate over the
walks of length ⌈k/2⌉ starting from E2, until finding a collision. We expect to find a collision, and
therefore the isogeny φ : E1 → E2, in O(Nk/2) and with O(Nk/2) storage. Regarding quantum
algorithms, Tani’s claw finding algorithm [305] solves Problem 4.3.4 for sufficiently smooth degrees
N . However, this algorithm assumes an unrealistic cost of accessing quantum memory, which
makes this algorithm more expensive than its classical counterpart, as argued by Jaques and
Schanck [192].

Letting the degree of the isogeny be p1/2+ϵ for 1/2 ≤ ϵ ≤ 3/4, Bencina, Kutas, Merz, Petit,
Stopar, and Weitkämper [22] exhibit a new classical attack, which outperforms meet-in-the-middle.
The authors also improve the best quantum attack in the range 0 < ϵ < 5/2. Furthermore, both
these algorithms are essentially memory-free.

How the hardness of this problem relates to the general supersingular isogeny problem for
dimensions g > 1 is unknown.

4.3.4 The isogeny problem as an endomorphism ring problem

The endomorphism ring problem asks, given a supersingular elliptic curve E, to compute its
endomorphism ring End(E). Wesolowski [318] showed that the endomorphism ring problem and the
dimension-1 supersingular isogeny problem are equivalent under reductions of polynomial expected
time, assuming the generalised Riemann hypothesis (GRH), improving upon known reductions
that relied on a variety of heuristic assumptions [148]. Finding efficient algorithms to compute
the endomorphism ring of a supersingular elliptic curve has been the focus of several works [14,
148, 169, 204]. We highlight in particular, the work by Eisenträger, Hallgren, Leonardi, Morrison,
and Park [148] which gives an algorithm for computing the endomorphism ring of a supersingular
curve that terminates in time O((log p)2p1/2) = Õ(p1/2) (under certain heuristics). Fuselier, Iezzi,
Kozek, Morrison, and Namoijam [169] remove these heuristics and obtain an algorithm running in

87

O((log p)2(log log p)3p1/2) = Õ(p1/2). Due to the result by Wesolowski, any improvements to these
algorithms will immediately impact the security of the dimension 1 supersingular isogeny problem.

88

Chapter 5

Quaternions in cryptography

This chapter explores how the Deuring correspondence, introduced in Section 3.2, can be used
in cryptography. We begin by translating the general isogeny problem to a problem involving
ideals and maximal orders in a quaternion algebra. Interestingly, this quaternionic problem can be
solved efficiently in polynomial time using the KLPT algorithm. Though the KLPT algorithm was
first developed for cryptanalysis, it has since found many constructive applications. Most notably,
SQIsign, which we introduce in Section 5.2, is an isogeny-based signature scheme built using the
Deuring correspondence and (variants of) the KLPT algorithm.

As before, throughout this chapter, we fix k to be a finite field Fq of prime characteristic p > 5.

5.1 The isogeny problem as a quaternion problem

Using the Deuring correspondence, we can rephrase the isogeny problem as a problem involving
maximal orders and ideals in a quaternion algebra.

Problem 5.1.1 (Quaternion N -isogeny path problem). Let N ⊂ N. Given a maximal order O
and a left O-ideal I, find J ∼ I of norm in N . When N = {N} we recover Section 4.3.3.

5.1.1 The KLPT algorithm

In their seminal 2014 paper, Kohel, Lauter, Petit, and Tignol [203] give a probabilistic algorithm
(usually referred to as the KLPT algorithm) which solves the quaternion N -isogeny path problem
when N = {ℓe : ℓ prime, e ∈ N where e > 7

2 log(p) + ϵ for ϵ > 0} in expected polynomial time,
subject to reasonable heuristics on expected distributions of primes. A variant of this algorithm
where N includes powersmooth norms was also introduced in the original KLPT paper [203,
§4.7], and described in detail by Galbraith, Petit, and Silva [174, §4.3]. The general case is treated
by Leroux [217]. For an excellent exposition of the different KLPT-like algorithms, we refer to [217].

Though it is a purely quaternionic algorithm, it has seen a variety of applications in isogeny-
based cryptography due to the Deuring correspondence. A variant of the KLPT algorithm which
provably terminates in polynomial time (assuming GRH) was the core to showing the equivalence
of the endomorphism ring problem and the isogeny problem [318]. Other versions of the algo-
rithm have also shown to be a key algorithmic tool in constructive applications, such as the GPS
signature [174] and SQIsign [125, 126], amongst others.

At a high-level, to solve Problem 5.1.1, we need to find the solution to norm equations in ideals.
The brilliant idea behind the KLPT algorithm is the observation that finding solutions to norm

89

equations in ideals of special extremal orders is easier. Special extremal orders are defined generally
in, for example, [203, §2.3]. For our purposes, it will suffice to know the following example.

Example 5.1.2. Consider p ≡ 3 mod 4. In this case, we have the special extremal order O0 =

⟨1, i, i+j2 , 1+k2 ⟩ with i2 = −1, j2 = −p and k = ij. The order O0 is isomorphic to the endomorphism
ring End(E0) of the elliptic curve with j-invariant 1728 (see Example 3.2.1). This special order
will play an important role throughout this thesis, and we therefore fix the notation O0 and its
corresponding elliptic curve E0. Examples of special extremal orders for other primes appear
in [203].

Remark 5.1.3. When applying the KLPT algorithm throughout this thesis, we set p ≡ 3 mod 4

so that we can fix our special extremal order to be O0 as in Example 5.1.2.

Given a O0-ideal I and some fixed set N , the KLPT algorithm finds an equivalent ideal J ∼ I of
norm in N . For a O0-ideal I and β ∈ I\{0}, the map given in Equation (3.5) outputs an equivalent
ideal J ∼ I of norm nrd(J) = nrd(β)/ nrd(I). So, it suffices to find a non-zero element β ∈ I with
norm in nrd(I)N := {nrd(I)n : n ∈ N}. Therefore, the main goal of the KLPT algorithm is to
solve the norm equation nrd(β) = nrd(I)n for n ∈ N and β ∈ I. An in-depth understanding of
how to find this element β will not be needed for the work in this thesis, and we refer a reader
to [203] or [217, Chapter 3] for more details.

Though the original KLPT algorithm is presented as a probabilistic algorithm, Leroux describes
how it can be made deterministic by fixing an order on the random choices made (see [217, Remark
3.2.8]). For the purposes of this thesis, it will be sufficient to know that KLPT algorithm is an
efficient deterministic algorithm and to know the size of its output, as given by the following
theorem.

Theorem 5.1.4. The KLPT algorithm on input I and N = {ℓe : ℓ prime, e ∈ N} is a determinis-
tic algorithm which runs in heuristic polynomial time in log(p) and log(nrd I) (under certain heuris-
tic assumptions). Furthermore, the norm of the output ideal J satisfies log(nrd J) ≈ 7

2 logℓ(p).

Proof. This is given by, for example, Leroux [217, Proposition 3.2.7]. For more details on the
heuristic assumptions, see [203].

An improvement due to Petit and Smith [260] allows us to reduce the size of the output J to
log(nrd J) ≈ 3 logℓ(p). We usually take ℓ = 2.

Remark 5.1.5. Looking at Theorem 5.1.4, we remark that a big drawback is that the norm of
the output ideal will be large compared to the norm of the optimal solution (which can a priori be
estimated as O(p)). In fact, it is a large source of inefficiency in constructive applications of the
KLPT algorithm, as the norm of the output ideal directly corresponds to the degree of an isogeny
that needs to be computed.

Kohel, Lauter, Petit, and Tignol [203] show that their algorithm can be extended to work for
a O-ideal where O is not necessarily a special extremal order. Take a connecting (O1,O2)-ideal
I, where neither O1 nor O2 are special extremal. To find an equivalent ideal J ∼ I, it suffices to

90

find Ji ∼ Ii where Ii is a connecting (O0,Oi)-ideal, for i = 1, 2. Note that Ii exists because all
maximal orders are connected,1 and the Ji can be computed using the KLPT algorithm.

While this algorithm is satisfactory for cryptanalysis, the norm of the output ideal is too large
to be used for constructive purposes. The original version of the KLPT algorithm was used to
construct the GPS signature [174], but it proved to be impractical. This leads to a new generic
KLPT algorithm introduced by De Feo, Kohel, Leroux, Petit, and Wesolowski [125], and later
improved by De Feo, Leroux, Longa, and Wesolowski [126], with the main objective of constructing
SQIsign, a practical signature scheme. For any maximal order O, given a O-ideal I and a (O0,O)-
ideal K of prime norm coprime to nrd (I), the generic KLPT algorithm finds an equivalent ideal
J ∼ I of norm in N . It does so by solving norm equations in the order O∩O0 = Z+ I.2 For more
algorithmic details see [217, §3.3]; for our purposes it is sufficient to understand the runtime and
output size of the generic KLPT algorithm.

Proposition 5.1.6. On input I, a left O-ideal and N = {ℓe : ℓ prime, e ∈ N}, the generic KLPT
algorithm is a deterministic algorithm which runs in heuristic polynomial time in log(p), log(nrd I)
and the bound on coefficients of a basis for O. Furthermore, the norm nrd (J) of the output ideal
J satisfies logℓ(nrd J) ≈ 15

4 logℓ(p).

Proof. This follows from [217, §3.3].

5.2 SQIsign: a signature scheme from isogenies

We now describe the isogeny-based signature scheme SQIsign. SQIsign was introduced by De Feo,
Kohel, Leroux, Petit, and Wesolowski [125], and later improved by De Feo, Leroux, Longa, and
Wesolowski [126]. In June 2023, it was submitted to NIST’s alternate call for post-quantum secure
signature schemes [78].

SQIsign is constructed from a Σ-protocol that proves knowledge of a secret (non-scalar) endo-
morphism α ∈ End(E) for some public curve E. At its core, the prover shows this knowledge by
being able to compute an isogeny ϕ from E to some random curve E′.

5.2.1 Identification Protocol

Following the blueprint laid out in Sections 1.1.3 and 1.1.4, we construct an identification protocol
for the following relation

(5.1) (E,α) ∈ R ⇐⇒ α is a cyclic smooth endomorphism of E.

This relation is hard, as per Definition 1.1.12, assuming the hardness of the supersingular smooth
endomorphism problem.

1This follows from the fact that all maximal orders have the same genus, as discussed by Leroux [217, pg. 34]
or Voight [316, §17.1].

2Such an order O ∩ O0 is called an Eichler order as defined in [316, Definition 23.4.1], and the a proof of the
equality with Z+ I can be found in [125, Proposition 1].

91

Problem 5.2.1. The supersingular smooth endomorphism problem asks, given a supersingular
elliptic curve E defined over Fp2 , to find a (non-trivial) cyclic endomorphism of E of smooth
degree.

Random endomorphisms in E can be constructed by taking a random walk E → E′, then finding a
non-zero cyclic endomorphism of E′. Adapting the algorithm by Page and Wesolowski [257], we can
reduce the endomorphism ring problem to Problem 5.2.1. In Section 4.3, we saw the equivalence of
the endomorphism ring problem and the dimension-1 supersingular isogeny problem, whose best
classical attack runs in Õ(p1/2) and best quantum attack runs in Õ(p1/4). Based on this evidence,
the relation R is a hard relation (as defined in Definition 1.1.12).

We first give a high-level description of the identification protocol (constructed as a Σ-protocol
for the hard relation R) between a prover P and verifier V below. Fix a prime number p ≈ 2λ, for
security parameter λ, and supersingular elliptic curve E0/Fp2 with known endomorphism ring O0.
Fix e ∈ N. The ID scheme proceeds as follows:

• (pk, sk) $←− Gen(1λ): Compute an φsk : E0 → Epk, with corresponding public key Epk. Output
key pair pk := Epk and sk := φsk.

• P(pk, sk) ⇋ V(pk): A 3-move interactive protocol between P and V defined as follows.

1. P generates a random commitment isogeny φcom : E0 → Ecom of smooth degree Dcom,
and sends Ecom to V.

2. V computes a random challenge isogeny φchall : Ecom → Echall of smooth degree Dchall,
and sends φchall to P.

3. P uses the knowledge of φcom and φchall to compute the response isogeny φresp : Epk →
Echall of degree 2e.

V outputs accept if φresp is an isogeny from Epk to Echall of degree 2e, and φ̂chall ◦ φresp is
cyclic. Otherwise, V outputs reject.

E0 Ecom

Epk Echall

φsk

φresp

φchall

φcom

Figure 5.1: The SQIsign protocol with three phases: commitment φcom, challenge φchall, and response
φresp.

We now describe each phase in more detail. For the setup, we take p ≡ 3 mod 4 and use the
curve E0 : y2 = x3 + x, as in Example 3.2.1.

Key Generation. Sample a random secret left O0-ideal Isk of secret prime norm Dsk. This ideal
will be used by P in the response phase. Next, we compute an equivalent ideal Jsk ∼ Isk whose norm
is a power-of-2 using KeyGenKLPT, a variant of the original KLPT algorithm from Theorem 5.1.4
which follows a similar structure but is specialised to the application of key generation. For more

92

details, we refer to Algorithm 14 in [78]. Translate Jsk to the corresponding isogeny φsk : E0 → Epk

using the ideal-to-isogeny procedure from Section 3.2.1. The prover P outputs sk := (Isk, Jsk, φsk)

and pk := Epk.

Commitment, Challenge, Response. We first compute the commitment ideal Icom of norm
Dcom and the corresponding isogeny φcom : E0 → Ecom, using an execution of the algorithm
IdealToIsogenyDcom

(Algorithm 3.1). After receiving the challenge isogeny φchall, we use the isogeny-
to-ideal routine from Section 3.2.3 to obtain the corresponding ideal Ichall. The response phase
proceeds as follows. We construct an equivalent ideal J ∼ Isk · Icom · Ichall of norm 2e using
SigningKLPT. The algorithm SigningKLPT is a variant of the generic KLPT algorithm from Propo-
sition 5.1.6 (with ℓ = 2), stemming from security considerations: (a) the output in SigningKLPT
has constant norm 2e (so that it does not depend on the secret); and (b) randomisation is intro-
duced into SigningKLPT to ensure a good distribution of the output ideals. For more details, we
refer to Algorithm 17 in [78]. We fix e ≈ 15

4 log(p) in the setup, as this is the expected output size
of the generic KLPT algorithm. Explicitly, the NIST submission takes e = ⌈ 154 log(p)⌉ + 25 [78,
§7.2.3]. This procedure is repeated until J corresponds to a cyclic isogeny.3 Afterwards, the prover
P computes the corresponding isogeny φresp : Epk → Echall with the ideal-to-isogeny algorithm
from Section 3.2.2, using knowledge of an isogeny φsk : E0 → Epk and ideal Jsk. Finally, P outputs
response φresp.

Verification. The main bottleneck of verification is the computation of the response isogeny φresp,
which has degree 2e where e ≈ 15

4 log(p). For example, for NIST Level I security we have e ≈ 900.
To ensure isogeny computations remain over Fp2 , we decompose φresp as φg ◦ · · · ◦ φ1, where each
φi is of degree (dividing) 2f , g = ⌈e/f⌉, and f ∈ N is maximal such that 2f | p2 − 1. We delay a
more detailed discussion of verification to Chapter 11, where we explore new ways to accelerate it.

Correctness follows straightforwardly from the correctness of the algorithms involved in the key
generation and interactive protocol. Most notably, the correctness of SigningKLPT follows similarly
to the correctness of the generic KLPT algorithm in Proposition 5.1.6. For more details see [217,
Proposition 5.3.5].

5.2.1.1 Special soundness

We show that the underlying Σ-protocol is special sound, as defined in Definition 1.1.9. We
follow De Feo, Kohel, Leroux, Petit, and Wesolowski [125, §3.2].

Proposition 5.2.2. Assuming the hardness of Problem 5.2.1 (when E is restricted to be the public
key of the ID scheme), the identification scheme described above is special sound.

Proof. Suppose we are given two transcripts (Dcom, φchall, φresp) and (Dcom, φ
′
chall, φ

′
resp). If φchall ̸=

φ′
chall then we construct α = φ̂′

resp◦φ′
chall◦φ̂chall◦φresp : Epk → Epk. As φ̂chall◦φresp and φ̂′

chall◦φ′
resp

are non-cyclic by [125, Lemma 2], α is a non-scalar endomorphism of Epk of smooth degree, and
is therefore a witness for the relation in Equation (5.1), where E a public key of the ID scheme.
As φchall = φ′

chall with negligible probability, we get the statement of the theorem.
3The left O-ideal J corresponds to a cyclic isogeny if for all primes N we have J ⊈ NO.

93

We remark that to reduce the general isogeny problem to the smooth endomorphism problem
in Problem 5.2.1 when E is restricted to be the public key of the ID scheme, we must assume that the
public keys are computationally indistinguishable from the uniform distribution on supersingular
elliptic curves [257, §8.2].

5.2.1.2 Honest verifier zero-knowledge

Proving honest verifier zero-knowledge is harder and relies on the output distribution of the Sign-
ingKLPT. Indeed, the KLPT algorithm is needed for computing the response: although setting
φresp = φchall ◦ φcom ◦ φ̂sk gives an isogeny from Epk to Echall, this leaks the secret φsk. Fur-
ther, this is not a valid response, since the composition with φ̂chall is not cyclic. More precisely,
zero-knowledge relies on the assumption that the distribution of signatures is computationally in-
distinguishable from random isogenies of the same degree from the curve Epk. This is a new, more
ad-hoc assumption, see Problem 14 in [126]. We omit an in-depth discussion on zero-knowledge as
it will not be necessary for this thesis, and refer an interested reader to the original SQIsign arti-
cles [125, 126]. We simply remark that there have, thus far, been no specialised attacks that exploit
this newer assumption that are better than simply recovering the secret isogeny [125, Appendix
B].

5.2.2 SQIsign: the signature scheme

We now detail how the identification protocol of Section 5.2.1 can be transformed into a signature
scheme using the Fiat–Shamir transform, as detailed in Section 1.1.4. The resulting signature
scheme is called SQIsign.

We first require a cryptographic hash function that outputs an isogeny of degree D =
∏n
i=1 ℓ

ei
i .

It is constructed as follows. Let H : {0, 1}∗ → [1, µ(D)] be a cryptographic hash function, where
µ(D) =

∏n
i=1 ℓ

ei−1
i (ℓi + 1). From the output of H, say s ∈ [1, µ(D)], we use the function FD(E, s)

to map s to non-backtracking sequences of isogenies of total degree D starting at E. This function
is a generalisation of the CGL hash function [76] given by De Feo, Saint Guilhem, Fouotsa, Kutas,
Leroux, Petit, Silva, and Wesolowski [128, §3.1].

The signature scheme SQIsign is defined as the triple (KGen,Sign,Verify) of polynomial time
algorithms defined (at a high-level) as follows. For the setup, fix p ≡ 3 mod 4, supersingular curve
E0 : y2 = x3 + x, and e ∈ N with e ≈ 15

4 log(p).

• (vk, sk) $←− KGen(1λ): Fix a cryptographic hash function H : {0, 1}∗ → [1, µ(Dchall)]. Run
the key generation algorithm (Epk, φsk)← Gen(1λ) of the underlying ID scheme, and output
verification key vk := (H, Epk) and signing key sk := (φsk,H, Epk).

• σ
$←− Sign(sk,m): The signing algorithm performs a run of the underlying Σ-protocol by

parsing sk as (φsk,H, Epk) and computing the commitment φcom : E0 → Ecom. Then,
it computes the challenge φchall of degree Dchall by running FDchall(Ecom, s) where s =

H(j(Ecom),m). Finally, it computes the response isogeny φresp as in the ID scheme, and
returns σ := (Ecom, φresp) as a signature on m.

94

• accept/reject ← Verify(vk, σ,m): The verification algorithm parses vk as (H, Epk) and σ

as (Ecom, φresp), and uses s′ = H(j(Ecom),m) to compute φ′
chall = FDchall(Ecom, s

′) : Ecom →
E′

chall. It will return accept if φresp is an isogeny from Epk to E′
chall of degree 2e, and

φ̂chall ◦ φresp is cyclic. Otherwise, it outputs reject.

As SQIsign is constructed from a Σ-protocol for a hard relation (and therefore a passively
secure ID scheme by Theorem 1.1.13), by Theorem 1.1.16 we have that SQIsign is correct and
is unforgeable under chosen-message attacks in the random oracle model assuming the hardness
of Problem 5.2.1 and the problem underlying the zero-knowledge property, given more explicitly
in [126, Problem 14].

In the discussion above, we have not detailed how we represent the signature (Ecom, φresp).
SQIsign uses supersingular elliptic curves of Montgomery form E : y2 = x(x2+Ax+1). Therefore,
after normalising the elliptic curve so that we fix representative of the Fp-isomorphism class,
we can represent Ecom by its coefficient A ∈ Fp2 . One way to represent φresp is by the kernel
points K1, . . . ,Kg generating isogenies φ1, . . . , φg, respectively, such that φresp = φg ◦ · · · ◦ φ1,
and computing the corresponding isogenies with Vélu’s formulæ or

√
élu. This will be sufficient

for uncompressed signatures, however there are techniques we can use to compress the signatures
further, as we will detail in Chapter 11.

5.2.2.1 Attack avenues

The possible avenues of attack for SQIsign are as follows [78, §9]:4

• Endomorphism ring and general isogeny computation: We discuss this extensively in Sec-
tion 4.3.1 and Section 4.3.4. The best classical and quantum attacks run in Õ(p1/2) and
Õ(p1/4), respectively.

• Key recovery: In SQIsign, the secret isogeny φsk has secret prime degree bounded by Bsk.
We set Bsk ≈ p1/4 so that the number of such isogenies is close to p1/2. As Bsk is small
enough, the best attack is an exhaustive search, i.e., an attacker computes all isogenies of
degree smaller than Bsk and compares their codomain curve with Epk. Classicaly, this runs
in Θ̃(p1/2). Quantumly, we can apply Grover’s algorithm which yields a quadratic speed-up
at best.

We could also recover the secret key by first computing the commitment isogeny φcom : E0 →
Ecom. With φcom, the challenge isogeny φchall and the signature isogeny φresp, we can obtain
an isogeny from E0 to Epk, giving us an equivalent key that is sufficient to sign. As Dcom

is smooth, we run a meet-in-the-middle strategy which costs Õ(D
1/2
com), though with high

memory requirements. Applying Grover’s algorithm to this, we obtain a quantum attack
costing at least Õ(D

1/4
com).

• Soundness/Forgery attacks: As discussed in Section 5.2.1.1, breaking soundness of the under-
lying ID protocol reduces to finding one non-trivial endomorphism of Epk. The best classical
attack costs Õ(p1/2), and best quantum attack runs in Õ(p1/4).

4We do not consider side-channel attacks in this thesis.

95

An attacker can forge a signature by first generating a random isogeny σ : Epk → Echall of
expected degree of the signature and a random isogeny φ̂ : Echall → Ecom of degree Dchall,
and hoping that H(j(Ecom),m) is consistent with the challenge isogeny. The cost of this
attack is Õ(Dchall) classically and Õ(D

1/2
chall) quantumly.

• Zero-knowledge: To attack zero-knowledge of the underlying ID scheme, the best we can do is
recover the secret isogeny. Using this secret key, one can then trivially distinguish signatures
from random isogenies of the same degree originating at Epk. As we have already argued,
the cost of computing the secret isogeny is Õ(p1/2) classically and Õ(p1/4) quantumly.

5.2.2.2 Parameter selection

Let us turn now to the parameter selection of SQIsign. Taking into account the possible avenues
of attack, we want to choose SQIsign parameters that offer at least λ bits of security against all
classical attacks and λ/2 bits of security against all quantum attacks. We therefore have the
following requirements for security level λ:

• The prime p satisfies log(p) ≈ 2λ with p ≡ 3 mod 4.

• The secret isogeny φsk is chosen with (secret) degree a prime bounded by Bsk = 2λ/2.

• The degree of φcom should be of size roughly 22λ ≈ p.

• The degree of φchall should be of size roughly 2λ ≈ p1/2.

There are more restrictions imposed to increase the efficiency of SQIsign. The bottleneck of SQIsign
is the computation of isogenies. By Equation (4.1) and Equation (4.2), for a supersingular curve
E/Fp2 , we have #E(Fp2) = (p± 1)2 and #Et(Fp2) = (p∓ 1)2. To use x-only arithmetic over Fp2 ,
SQIsign restricts to computing isogenies of smooth degree N | (p2 − 1). Finding SQIsign-friendly
primes reduces to finding primes p with p2−1 divisible by a large, smooth number. More explicitly,
for a security level λ, we also have the following restrictions:

• We perform signing in ⌈e/f⌉ isogeny blocks of degree 2f . The bottleneck of this is the
generation of kernel points for each of the 2f -isogenies, and so we require f to be as large as
possible such that 2f | p+ 1 to reduce the number of kernel point generations.

• Recall from Section 3.2.2 that for signing we need a smooth odd factor T | (p2 − 1) of size
roughly p5/4.

• The degrees Dcom and Dchall should be coprime. We usually fix that Dcom | T and Dchall |
2f3g for the efficiency of challenge generation.

To achieve NIST Level I, III, and V security, we set the security parameter as λ = 128, 192, 256,
respectively. Concretely, this means that, for each of these security parameters, we have log(p) ≈
256, 384, 512, and log(T) ≈ 320, 480, 640, with f as large as possible given the above restrictions.
Finding SQIsign-friendly parameters is a difficult problem that will be the focus of Chapter 10.

96

Chapter 6

Overview of Literature and Contribu-

tions

In this chapter, we review the relevant literature and summarise the main contributions of this
thesis.

Remark 6.0.1. We acknowledge this literature review is appearing unusually late in the thesis.
This choice was made due to the fact that the literature relevant to this thesis is quite (mathemat-
ically) technical for a general cryptographic audience, and can be more easily discussed after the
preliminaries.

6.1 Foundations

The use of isogenies in cryptography dates back to elliptic-curve cryptography (ECC), which con-
structs public-key cryptography based on elliptic curves over finite fields. ECC started in the
1980s by Miller [236] and Koblitz [202] who first suggested the use of elliptic curves to construct a
Diffie-Hellman key exchange protocol with security based on the hardness of the discrete logarithm
problem in elliptic curves groups. This field gained popularity after Schoof [280] developed an ef-
ficient algorithm to compute the order of elliptic curves over Fq. This enabled the construction of
an elliptic curve E so that the discrete logarithm problem in E(Fq) is hard. Schoof’s algorithm
was later improved by Elkies [149] and Atkins [279] from O(log(q)5+ϵ) to O(log(q)4+ϵ), giving the
Schoof–Elkies–Atkins algorithm. The key tool to this improvement are isogenies. Isogenies have
also seen applications in the cryptanalysis of ECC [191].

The real power of isogenies in cryptography, however, was seen through the advent of isogeny-
based cryptography. Though invented in the 2000s, this field only gained traction in the late
2010s due to increased interest in constructing post-quantum secure cryptoschemes. Isogeny-based
cryptography is a promising type of post-quantum secure cryptography, which gives schemes that
have small communication cost.

6.1.1 Computation of isogenies

We begin by providing an overview of work that deal with the efficient computation of isogenies.
We focus in particular on the case most relevant to cryptography: A is a p.p. abelian variety
(of dimension 1 or 2) defined over a finite field Fq of prime characteristic p. In light of the
correspondence between finite subgroups G ⊆ A(Fp)[N] and N -isogenies with domain A, it is
natural to ask whether this correspondence is effective.

97

Question 6.1.1. Given the description of a subgroup G ⊆ A(Fp)[N], where N is coprime to p,
can we efficiently compute the corresponding (N, . . . , N)-isogeny φ : A→ A/G with kernel G?

As we can decompose isogenies into their prime degree components, it suffices to answer this
question for prime N . When A is an elliptic curve in Weierstrass form, this question was answered
by Vélu. Given an N -torsion point P generating the kernel of an N -isogeny, Vélu [314] gives an
O(N) algorithm to compute the image of the isogeny as well as push points through the isogeny.
This was improved for large enough N by Bernstein, De Feo, Leroux, and Smith [27] who present
an algorithm, called

√
élu that runs in Õ(

√
N). Other works have optimised N -isogeny formulæ

for different forms of elliptic curves, including Montgomery curves [102, 266], twisted Edwards
curves [234, 243], and Hessian curves [54, 114].

Alternative approaches to computing N -isogenies have been considered that do not require a
point of order N that generates the kernel, for example, by using modular polynomials or division
polynomials. Castryck, Decru, and Vercauteren [73] introduced a new approach using elliptic
curves in Tate normal form to give radical formulæ for computing isogenies. This method is fully
deterministic and completely avoids generatingN -torsion points. The authors give explicit formulæ
for the coordinates of an N -torsion point P ′ on the codomain of a cyclic N -isogeny φ : E → E′,
such that composing φ with E′ → E′/⟨P ′⟩ yields a cyclic N2-isogeny, for N ≤ 13. As such, this
method is particularly useful when computing chains of N -isogenies. Chi-Domínguez and Reijnders
[80] tailor this method for use in cryptography by making the formulæ fully projective (therefore
avoiding field inversions) and constant time. Onuki and Moriya [251] give radical isogenies for
elliptic curves in Montgomery form for N = 3, 4. Castryck, Decru, Houben, and Vercauteren [71]
extend to N ≤ 17 and all prime powers in 18 ≤ N ≤ 37. More recently, Decru [129] provides
explicit radical N -isogeny formulæ for all odd integers N , giving a highly efficient method to
compute a long chain of N -isogenies.

Moving to dimension 2, the situation is more difficult. For small N , there has been extensive
research into the computation of (N,N)-isogenies between Jacobians of genus-2 curves. The case
N = 2 is the most well understood. Explicit formulæ for computing (2, 2)-isogenies date back to
Richelot [269], and were re-developed in modern language by Bost and Mestre [50] and Cassels
and Flynn [66, §3].

For larger N , the most efficient methods arise from working instead on Kummer surfaces. In
this setting, Bruin, Flynn, and Testa [58], Nicholls [248], and Flynn [157] gave formulæ forN = 3, 4,
and 5, respectively. Flynn and Ti revisited the formulæ for N = 3 in a cryptographic context [159],
and Decru and Kunzweiler [130] further optimised these formulæ. A line of works by Bisson, Cosset,
Lubicz, and Robert [35, 96, 224, 272, 273] uses the theory of theta functions [245] to provide efficient
algorithms for any odd N and arbitrarily high dimensional abelian varieties. The AVIsogenies

software package based on their results is publicly available [36]. Dartois, Maino, Pope, and Robert
[117] revisited these techniques in the context of cryptography to efficiently compute chains of (2, 2)-
isogenies between products of elliptic curves in the theta model. In Chapter 9, we delve deeper into
literature surrounding the topic of computing (N,N)-isogenies, where we exhibit a general method
for computing (N,N)-isogenies between fast Kummer surfaces. In particular, Chapter 9 focuses on
the case N = 3: we develop a highly optimised algorithm for computing chains of (3, 3)-isogenies
that outperforms those in the literature by at least a factor of 8.

98

6.1.2 Hard Homogeneous Spaces

The use of isogenies in cryptography was first introduced independently by Couveignes [108]
and Rostovtsev and Stolbunov [275]. Couveignes introduced the notion of a hard homogeneous
space (HHS) [108]. At a high level, a HHS is a commutative group G that acts on the set X, i.e.,
given an element α ∈ G we can efficiently compute its action [α]⋆x for all x ∈ X, but inverting this
action is computationally hard for any x. Couveignes instantiated a HHS using ordinary elliptic
curves E defined over Fq, observing that the class group Cl(O) of the ring of integers O of imag-
inary quadratic field Q(

√
d) (for some d < 0) acts commutatively on the set of ordinary elliptic

curves with endomorphism ring O. Couveignes then showed how to construct a Diffie–Hellman-like
non-interactive key exchange from this HHS. Rostovtsev and Stolbunov [275] proposed a public
key encryption scheme based on the same HHS, later followed by Stolbunov [299] who proposed
a non-interactive key exchange, similar to that described by Couveignes. The commutative group
action leads to a sub-exponential classical attack due to Childs, Jao, and Soukharev [82], which
adapts the Kuperberg’s quantum algorithm for the hidden shift problem. As such, protocols built
from this HHS are very inefficient, even after implementing the speed-ups due to De Feo, Kieffer,
and Smith [124].

Following this, Castryck, Lange, Martindale, Panny, and Renes [74] constructed a more practi-
cal HHS using supersingular elliptic curves defined over Fp called CSIDH. As CSIDH is a restricted
HHS, i.e., the structure of the group G is not known, the group action can only be efficiently
evaluated for a subset of elements. Beullens, Kleinjung, and Vercauteren [32] address this by con-
structing another isogeny-based HHS, called CSI-FiSh, by explicitly computing the structure of G
for the NIST Level I parameter set. However, both CSIDH and CSI-FiSh are still vulnerable to
sub-exponential quantum attacks. Recent strides in the quantum cryptanalysis of CSIDH by Bon-
netain and Schrottenloher [44] and Peikert [258] have called the original CSIDH parameter sets into
question, meaning larger parameters may have to be used [77]. A lot of research in the field has
thus focused on making CSIDH more practical [68, 73, 234]. More recently, a new isogeny-based
HHS called SCALLOP [120] aims to obtain a (non-restricted) HHS for higher security levels using
oriented elliptic curves.

Alamati, De Feo, Montgomery, and Patranabis [3] introduce a framework to formalise HHSs,
and instead use the terminology cryptographic group action. The authors demonstrate the utility
of this framework by using it to construct several new primitives, such as a Naor–Reingold style
pseudorandom function. HHSs have also been used extensively (both directly and indirectly) to
construct cryptographic primitives such as signatures [32, 74, 112, 122, 131], secret sharing [7, 8, 30,
127], ring signatures [31], oblivious pseudorandom functions [41, 276], and blind signatures [199].
This framework will not be pertinent to this work as we focus instead on supersingular curves
defined over Fp2 , where we do not have this commutative group action.

6.1.3 Supersingular isogeny Diffie–Hellman

Supersingular elliptic curves were introduced to cryptography by Charles, Goren, and Lauter [76],
who created a hash function based on the Ramanujan property of the supersingular isogeny graph.
To combat the disadvantages of the CRS scheme, De Feo, Jao, and Plût [123] proposed a key ex-

99

change scheme called Supersingular Isogeny Diffie–Hellman (SIDH). SIDH follows in the footsteps
of the CGL hash function and uses supersingular elliptic curves over Fp2 to create a Diffie–Hellman-
like key exchange protocol. As the endomorphism rings of supersingular elliptic curves are maximal
orders in the quaternion algebra Bp,∞, there is no commutative group action and SIDH is not sus-
ceptible to the sub-exponential classical attack [82]. Due to this non-commutativity, the image of
certain points under the isogeny needs to be provided as auxiliary input during the key exchange.
As a result, the security of SIDH is based on a variant of the general isogeny problem, called the
supersingular computational Diffie–Hellman problem, whose security was not well-understood at
the time it was proposed.

Problem 6.1.2. Fix a base curve E0 with j(E0) = 1728.1 Let φA : E0 → EA be an isogeny whose
kernel is generated by KA = [mA]PA + [nA]QA, where mA, nA chosen at random from Z/NeA

A Z
and not both divisible by NA. We similarly define an isogeny φB : E0 → EB with kernel generator
KB = [mB]PB + [nB]QB . Given the curves EA, EB and the torsion points images

ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA),

find the j-invariant of EA,B = E0/⟨KA,KB⟩. We depict this in Figure 6.1.

E0 EA = E0/⟨KA⟩

EB = E0/⟨KB⟩ EA,B = E0/⟨KA,KB⟩

φA

φB

Figure 6.1: A depiction of Problem 6.1.2. The data in red is secret, in black is public and in blue is the
data the problem asks for.

Galbraith, Petit, Shani, and Ti [173] gave a polynomial-time active attack against SIDH with
static keys using the additional torsion point information revealed during the key exchange. To
protect against this attack, a variant of the Fujisaki–Okamoto transformation [167] due to Hofheinz,
Hövelmanns, and Kiltz [181] is applied to SIDH to make it a secure key encapsulation mechanism
called SIKE [10]. The initial proposal by De Feo, Jao and Plût was mostly theoretical in nature,
taking around 50ms per key exchange. Costello, Longa, and Naehrig [104] introduced new al-
gorithms for SIDH that significantly improved its performance and illustrated its potential as a
practical post-quantum key exchange candidate. This lead to the submission of SIKE to NIST’s
standardisation effort [310] for post-quantum secure key encapsulation mechanisms and signature
schemes.

Following this, there was an increase in research on supersingular elliptic curves for cryptogra-
phy. A large part of this research tackled the inefficiency drawbacks of SIDH compared to other
types of post-quantum secure KEMs, such as the lattice-based alternative Kyber [47] that has since
been standardised by NIST. We highlight in particular a work by Costello [99], which introduced
a variant of SIDH, called B-SIDH, built using a new framework for instantiating isogeny-based

1Recall that such curve has known endomorphism ring – see Example 3.2.1.

100

cryptography to work with both an elliptic curve and its quadratic twist. Costello noted that
restricting operations to the x-line on both sets of twists allows all arithmetic to be carried out
over Fp2 as usual. We remark that this idea was first mentioned in De Feo’s habilitation [118].

6.2 SIDH is broken

The security of SIDH rests upon a variant of the general isogeny problem, where the attacker knows
both the degree of the secret isogenies and the images of certain points under the secret isogenies.
Revealing this torsion point information proved to be a great weakness to the security of SIDH.

The first line of works that exhibited this was pioneered by Petit [259], and exploits the torsion
point images to give new classical attacks against unbalanced variants of SIDH. Within the context
of SIDH, the degrees of Alice and Bob’s secret isogenies in Problem 6.1.2 are A ≈ B ≈ √p. When
the degrees of the isogenies are unbalanced, namely B > A4 > p4, Petit [259, Prop. 2] showed that
one can exploit the torsion point information to recover one of the secret isogenies. Martindale and
Panny [228] present a number of avenues towards breaking SIDH that proved to be unsuccessful.
One such direction was attempting to apply Petit’s attack to balanced SIDH parameters. In
2021, Quehen, Kutas, Leonardi, Martindal, Panny, Petit, and Stange [262] improve and extend
Petit’s attacks. Séta [128] is a public-key encryption scheme that is constructed from a new family
of trapdoor one-way functions, where the inversion algorithm uses these torsion attacks on SIDH.
Kutas, Merz, Petit, and Weitkämper [211] further showed that unbalanced variants of SIDH were
susceptible to a subexponential quantum attack using the torsion point information revealed in
the protocol.

In August 2022, polynomial attacks against Problem 6.1.2 were announced independently
by Castryck and Decru [67] (who rely on the special starting curve used in SIKE), and Maino
and Martindale, later joined by Panny, Pope and Wesolowski [227] (who give a sub-exponential
attack when the starting curve is arbitrary). The attacks were then extended by Robert [271], who
gives a polynomial time attack for arbitrary starting curve and for abelian varieties of arbitrary
dimension. In particular, after this wave of attacks, any protocol whose security relied on the
isogeny problem with revealed torsion point information was completely broken. This includes
SIDH/SIKE and its variants such as B-SIDH, and Séta.

The attacks heavily rely on the extra information provided to the adversary in Problem 6.1.2,
namely: the degree of the secret isogenies and the torsion point images. Preliminary counter-
measures have been proposed by Fouotsa, Moriya, and Petit [160], later improved by Basso and
Fouotsa [18], which prevent the attacks by masking one of these pieces of data in the SIDH proto-
col. However, the countermeasures come at the expense of a decrease in efficiency and increase in
communication cost.

More recently, De Feo, Fouotsa, and Panny [121] explore modular isogeny problems where
the torsion information is masked by the action of a group of 2 × 2 matrices, giving reductions
between these problems and classifying them by their hardness. For example, when the matrix is
the identity matrix, we recover the SIDH hardness assumption.

101

6.3 Constructions

It is important to emphasize that the hardness of the general superspecial isogeny problem in
dimension g, where no torsion point information is revealed, is unaffected by these attacks. There-
fore, the security of isogeny-based signature SQIsign, introduced in Section 5.2, and variants is
unaffected. Recall from Section 4.3 that the best classical and quantum attacks against the more
general problem in dimension 1 run in Õ(p1/2) [132] and Õ(p1/4) [33], respectively. In Chapter 7,
we study the concrete complexity of the Delfs–Galbraith algorithm, and give a new classical attack
SuperSolver with improved concrete complexity.

6.3.1 SQIsign

Tangential to the line of work focusing on SIDH and CSIDH, Galbraith, Petit, and Silva [174] give
the first constructive application of the Deuring correspondence and the KLPT algorithm [203]:
an identification protocol whose security is based on the hardness of the endomorphism ring prob-
lem. Using the Fiat–Shamir transform, one can obtain a post-quantum secure signature scheme,
often referred to as the GPS signature. Though this signature showed the feasibility of such a
construction, it remains mainly theoretical with no accompanying implementation (to the best of
this author’s knowledge). A primary obstacle to the practicality of the identification scheme is the
binary challenge space {0, 1}, as this means the protocol must be repeated O(λ) times to achieve
negligible soundness error, where λ is the security parameter.

Following in the footsteps of the GPS signature, De Feo, Kohel, Leroux, Petit, and Wesolowski
[125] present SQIsign, a new KLPT-based signature scheme. Whilst the GPS signature relies on the
original KLPT algorithm that is efficient for special maximal orders (see Theorem 5.1.4), SQIsign
uses a generic variant of the KLPT algorithm that works for arbitrary maximal orders and with
smaller output size than the original proposal (see Proposition 5.1.6). Using these new tools,
the authors are able to construct an identification scheme with an exponentially sized challenge
space, and from it obtain a practical signature scheme from quaternions and isogenies. SQIsign
signatures are an order of magnitude smaller than all other post-quantum isogeny-based signature
schemes in terms of combined signature and public key sizes. For NIST-I security, key generation
and verification times are reasonable, taking around 0.6s and 50ms respectively. On the other
hand, signing requires around 2.5s. The inefficiency of signing is largely due to the conversion
from ideals of a maximal order in the quaternion algebra Bp,∞ to isogenies between supersingular
elliptic curves, which is polynomial time but expensive in practice. De Feo, Leroux, Longa, and
Wesolowski [126] develop new algorithms for this translation, obtaining a two-fold improvement on
signing time (see Section 3.2.2). Lin, Wang, Xu, and Zhao [221] introduce further improvements
to the SQIsign software, which lead to a speed-up of 5.5%, 8.8% and 25.3% for key generation,
signature and verification, respectively. However, SQIsign still remains far slower than other post-
quantum secure signatures based on, for example, lattices [140, 161]. In Chapter 11, we accelerate
SQIsign verification to make it as competitive as possible. In particular, we make verification 2.1

times faster, or up to 3.4 times when using size-speed trade-offs, compared to the state-of-the-art
implementation of SQIsign [126], without majorly degrading the performance of signing.

SQIsign suffers from another major drawback: the complicated parameter selection. As dis-

102

cussed in Section 5.2.2, for the algorithms involved in SQIsign signing and verification to be as
efficient as possible, we place heavy restrictions on the prime p. At its essence, the problem re-
duces to finding a prime p such that p2 − 1 has a large enough smooth factor. However, this has
proven to be a difficult task that has spurred a new line of research [99, 105, 128]. Finding such
primes was also required to find parameters for (the now broken) B-SIDH and Séta, and was the
main focus of these three earlier works. We extend this work in Chapter 10, targetting SQIsign
more specifically. In particular, we introduce a new method for prime finding combining the CHM
algorithm [86] with a ‘boosting’ method, exploiting the fact that SQIsign does not require p2−1 to
be fully smooth. More recently, Sterner [296] obtains primes p with p2 − 1 achieving the smallest
smoothness bound in the literature. However, the parameters given in this work are not suitable
for SQIsign as it is hard to enforce p2 − 1 to be divisible by a large power of 2 and 3, as needed
for the degree of the challenge and response isogeny. In joint work with Eriksen, Meyer, and
Rodríguez-Henríquez [277], we focus particularly on obtaining SQIsign-friendly parameters for all
NIST security levels.

Algorithmically, SQIsign is very different from SIDH/SIKE in its reliance on quaternionic al-
gorithms and exploiting the effective Deuring correspondence. With respect to security, the iden-
tification protocol underlying SQIsign is sound under the endomorphism problem, a fundamental
problem in isogeny-based cryptography which is equivalent to the general supersingular isogeny
problem, as shown by Wesolowski [318]. In contrast, its zero-knowledge property relies on the hard-
ness of a new ad-hoc problem based on the output distribution of the KLPT variant used in signing
(see Section 5.2). Despite this, as no torsion point information is released in the construction of
SQIsign, neither of these problems are susceptible to the SIDH/SIKE attacks. In 2023, SQIsign
was submitted to NIST’s new call for post-quantum secure signature schemes; SQIsign (NIST) is
currently the only isogeny-based candidate that has progressed to Round 2.

6.3.2 Moving to higher dimensions

While almost all research in isogeny-based cryptography has focused on elliptic curves and the
isogenies between them, there has been some interest in using higher dimensional varieties in
cryptography.

The conjectured hardness of the general superspecial isogeny problem (see Problem 4.3.1 with
g ≥ 2) underlies the security of higher dimensional isogeny-based cryptography. The best classical
and quantum attacks are due to Costello and Smith [107] and run in Õ(pg−1) and Õ(p(g−1)/2),
respectively. In Chapter 8, we give an optimised implementation of the classical attack for g = 2,
and determine its concrete complexity. Further to this, we introduce SplitSearcher, a new classical
attack with reduced concrete complexity. We remark that our new dimension-1 attack SuperSolver
from Chapter 7 and SplitSearcher follow the same general strategy. At the beginnning of Part II,
we formalise this strategy, paving the way for future work in this area.

In 2018, Takashima [303, §4.2] made a concrete proposal for a CGL-like hash function in
dimension 2 built from Jacobians of supersingular genus-2 curves and (2, 2)-isogenies between them.
From each Jacobian, there are 14 possible non-backtracking isogenies one can take. As pointed out
by Flynn and Ti [159, §2.3], however, the hash function is not collision-resistant due to an inherent
presence of small cycles in the corresponding isogeny graph. This was repaired by Castryck, Decru,

103

and Smith [72] by introducing the concept of a good extension. This reduces the number of possible
outgoing isogenies to 8. Furthermore, they argue that the correct generalisation of supersingular
elliptic curves to higher dimensions is superspecial p.p. abelian varieties. Decru and Kunzweiler
[130, §6] and Castryck and Decru [70] proposed new variants of this hash function by using (3, 3)-
isogenies. In Chapter 9, we improve on the efficiency of these proposals by introducing a new hash
function KuHash, built from our efficient (3, 3)-isogenies between fast Kummer surfaces.

6.3.3 Constructions from the SIDH attack

Remarkably, the SIDH/SIKE attacks have shown to be a powerful constructive tool and have
demonstrated that higher dimensional isogenies are an indispensable tool in constructing isogeny-
based cryptosystems. We conclude this chapter by discussing a new wave of research using these
attacks constructively, signalling a new era for isogeny-based cryptography from superspecial p.p.
abelian varieties.

The formulation of the SIDH/SIKE attack due to Robert [271] exhibited a powerful technique,
namely how to embed an isogeny of elliptic curves of large degree into an isogeny of smoother degree
between higher dimensional abelian varieties. A key parameter for the efficiency of this embedding
is the dimension: Robert showed that 8 dimensions is always sufficient. As the cost of computing
isogenies increases exponentially with dimension, applications aim to limit the dimension to 2 or 4.
As consequence of this breakthrough result, we now have a new way to represent isogenies; it is the
first representation that can describe non-smooth isogenies between any two elliptic curves. With
impressive strides towards optimising the implementation of (2, 2)-isogenies in dimension two [117]
and (2, 2, 2, 2)-isogenies in dimension four [115] using formulas derived from theta structures, this
new representation is efficient.

Existing protocols have received considerable improvements by relying on higher dimension rep-
resentations, such as SCALLOP-HD [79] and SQIsignHD [116]. Most pertinent to this manuscript
are the improvements to SQIsign. SQIsignHD uses 4-dimensional isogenies to drastically improve
the signing time and combined signature/public-key sizes in SQIsign, in addition to a number of
other benefits, but at the cost of a slowdown in verification. A new ideal-to-isogeny algorithm in-
troduced by Onuki and Nakagawa [252] uses two-dimensional isogenies. When applied to SQIsign,
key generation and the signing procedures are at least twice as fast as those in SQIsign (NIST)

for NIST security Level I, with the advantage becoming more significant at higher security levels,
and no degradation to verification time. Even more substantial improvements are seen with new
2-dimensional variants of SQIsign, called SQIsign2D [17, 142, 247]. These achieve sizes comparable
to SQIsignHD, slightly slower signing than SQIsignHD but still much faster than SQIsign, and the
fastest verification of any known variant of SQIsign. We further highlight that the security of
the rigorous variants of SQIsignHD and SQIsign2D in [17] rely solely on the endomorphism ring
problem, provided access to an isogeny sampling oracle. In this way, the ad-hoc assumption for
zero-knowledge is removed. We note also that for these new variants, SQIsignHD and SQIsign2D,
the restrictions on the prime p are lifted, and parameter selection is a much simpler task.

New schemes built from higher-dimensional representations have also since been constructed.
FESTA [19] is an isogeny-based public-key encryption (PKE) scheme constructed from a trapdoor
function, where the SIDH attacks are used to invert the one-way function. By constructing a new

104

algorithm to compute an isogeny of non-smooth degree using quaternion algebras and the SIDH
attack, FESTA was improved by Nakagawa and Onuki [246] to give QFESTA. Following this, Basso
[16] introduced POKE, a new framework to build cryptographic protocols from irrational isogenies
using higher dimensional representations. Basso uses this framework to construct, for example,
a new PKE scheme. Duparc, Fouotsa, and Vaudenay [143] construct an updatable public key
encryption scheme (UPKE) using the Deuring correspondence and the SIDH attacks, overcoming
the limitations of SIDH-based UPKE highlighted by Eaton, Jao, Komlo, and Mokrani [145]. Leroux
[218] proposed a class of verifiable delay functions where the evaluation uses algorithms for the
Deuring correspondence requiring isogenies of dimension d1, and the verification algorithm requires
the computation of d2-dimensional isogeny representations.

105

Part II
On the concrete complexity of

the isogeny problem

106

Attacking the isogeny problem

In Part II, we study the general supersingular isogeny problem. Recall that this problem asks,
given superspecial p.p. abelian varieties A1, A2 of dimension g defined over Fp2 , to find an isogeny
φ : A1 → A2. Throughout Chapter 7 and Chapter 8, we analyse the concrete complexity of
the best classical attacks against this problem in dimensions 1 and 2, respectively. In the case
where g = 1, the best attack is due to Delfs and Galbraith [132] and runs in Õ(

√
p). Increasing

dimension to g > 1, the best attack runs in Õ(pg−1), and is due to Costello and Smith [107]. As a
first step, we give an optimised implementation of each attack to obtain a theoretical grasp of their
concrete complexity. We then extend this by developing new tools that improve their concrete
complexity. The improvements made to each algorithm are best motivated by observing that the
Delfs–Galbraith and Costello–Smith attack follow a common strategy.

The general strategy

Superspecial abelian varieties A/Fp2 of dimension g ≥ 1 are nodes in the graph Xg(Fp). We denote
the set of nodes by Sg(Fp). Our goal is to find a path connecting two nodes A1 and A2. Before
giving the general strategy to find such a path, we define a special subset Xg ⊂ Sg(Fp) so that
finding a path between nodes in this set is asymptotically less costly than the general problem of
finding paths in Xg(Fp).

Definition 6.3.1. Consider the subset Xg ⊂ Sg(Fp), where the best attack against the general
isogeny problem between two abelian varieties A1, A2 ∈ Xg has asymptotic complexity Õ(pa) for
a > 0. Then, Xg is defined to be special if #Sg(Fp)/#Xg = Õ(pϵ) for ϵ ≥ a.

Let Xg be a special subset of Sg(Fp). Our strategy to solve the isogeny problem in Xg(Fp)
given A1, A2 ∈ Sg(Fp), is as follows. Fix a prime number N ̸= p.

1. Take a non-backtracking walk in Xg(Fp, N) from a node A1 until landing on a node A′
1 ∈ Xg,

thus obtaining an isogeny ϕ1 : A1 → A′
1. Similarly, for A2, we obtain an isogeny ϕ2 : A2 →

A′
2, for A′

2 ∈ Xg. Starting from a node in Sg(Fp), we expect to take Õ(pϵ) steps in Xg(Fp, N)

before finding an abelian variety in the special subset Xg. Thus, we find isogenies ϕ1 and ϕ2
in Õ(pϵ).

2. Find a path φ : A′
1 → A′

2 between these nodes in Xg. This can be done with Õ(pa) bit
operations.

3. Output the isogeny ϕ̂2 ◦ φ ◦ ϕ1 : A1 → A2.

As Xg is special, we have that ϵ ≥ a. Therefore, the first step in this attack is the bottleneck step
of the algorithm. Assuming that taking a step in the graph is polylogarithmic in p, the algorithm
will terminate with Õ(pϵ) bit operations. We now see how the attacks against the general isogeny
problem in dimension g = 1 and 2 fit within this framework.

Example 6.3.2 (The Delfs–Galbraith algorithm). We first aim to solve the dimension-1 super-
singular isogeny problem. Recall from Problem 4.3.1 that this asks to find an isogeny φ : E1 → E2

107

between two supersingular curves, E1/Fp2 and E2/Fp2 , whose j-invariants lie in Sp2 (see Equa-
tion (4.3)). The best classical attack against this problem is the Delfs–Galbraith algorithm, de-
scribed in Section 4.3. Using the notation as above, the special subset is Sp:

X1 := Sp = {E : j(E) ∈ Fp} ⊂ S1(Fp).

The best attack against the isogeny problem for curves in X1 has asymptotic complexity Õ(p1/4)

(i.e., a = 1/4). As #S1(Fp)/#X1 = Õ(p1/2), we have ϵ = 1/2. As discussed in Section 4.3, to take
a step in X1(Fp, N), we compute one of the DN,1 − 1 roots of

ΦN (X, jc)/(X − jp)

with cost polynomial in N and log p. For N fixed and small, the asymptotic complexity of the
Delfs–Galbraith algorithm is Õ(p1/2).

Example 6.3.3 (The Costello–Smith algorithm). Consider now the dimension-2 superspecial
isogeny problem that asks to find an isogeny φ : A1 → A2 between two p.p. abelian surfaces
A1/Fp2 and A2/Fp2 lying in J2(Fp) as defined by Equation (4.4). As explored in Section 4.3, the
best classical attack against this problem is the Costello–Smith algorithm, which takes the special
set to be the set of elliptic products E2(Fp):

X2 := E2(Fp) = {A ∈ S2(Fp) : A ∼= E1 × E2} ⊂ S2(Fp).

The best attack against the isogeny problem for curves in X2 has asymptotic complexity Õ(p1/2)

(i.e., a = 1/2), and #S2(Fp)/#X2 = Õ(p) so ϵ = 1. Taking steps in Xg(Fp, N) amounts to
computing (N,N)-isogenies between p.p. abelian surfaces, which has quasi-linear complexity in
N (see, for example, [224]). Therefore, for N fixed and small, the asymptotic complexity of the
Costello–Smith algorithm is Õ(p).

Improving the detection of the special subset

When attacking the general isogeny problem, we walk around the graph Xg(Fp, N) for some fixed
N . Most commonly, we take N = 2 as this minimises the cost of taking a step in the graph. Indeed,
taking a step corresponds to computing a (N, . . . , N)-isogeny, whose cost grows as N grows.

For g = 1 and 2, let DN,g be the number of outgoing edges from a node A ∈ Sg(Fp) as defined
in Equations (2.7) and (2.8). At each step, we inspect at most DN,g nodes and detect whether they
lie in the special subset Xg. The main idea to improve the concrete complexity of the attacks is to
improve the detection of the special subset Xg. Explicitly, we develop methods to detect whether
a node A ∈ Sg(Fp) is N -isogenous to a node in Xg for any N ≥ 2 and g = 1 and 2. Therefore,
while walking around Xg(Fp, 2), we can also inspect nodes in Xg(Fp, N) for any N , thus scanning a
larger proportion of the graph at each step, increasing the probability of finding a special node. If
the detection is not too costly, one can hope that this will lead to an improvement of the concrete
complexity of path finding. Introducing an efficient detection method whose complexity grows
only with N , and not p, for g = 1 and 2 will be the key to the works presented in Chapter 7
and Chapter 8, respectively.

108

Chapter 7

The isogeny problem in dimension 1

In this chapter, we study the general supersingular isogeny problem in dimension 1, and determine
the concrete complexity of the best classical attack against it: the Delfs–Galbraith algorithm.
Using a new efficient method to detect whether a polynomial in Fp2 [x] has roots in Fp, we improve
the concrete complexity of this attack. For cryptographic sized primes p ≈ 2256, we show that
there is a decrease in complexity by around a factor of 8. The chapter is based on the paper

Accelerating the Delfs–Galbraith algorithm with fast subfield root detection

which was joint work with Craig Costello and Jia Shi, published at CRYPTO 2022 [90]. This
chapter presents the paper as published, except for the following alterations:

• At the time of publication, understanding the concrete complexity of the dimension 1 isogeny
problem had applications to better understanding the security of B-SIDH, a variant of SIDH.
However, B-SIDH is now broken (see Section 6.2), and so this application is no longer of inter-
est. We have added disclaimers throughout the chapter when these schemes are mentioned.
We emphasize that this problem still underlies the security of all isogeny-based cryptoschemes
using supersingular elliptic curves over Fp2 , and so the results in this chapter still remain of
interest to the community.

• We add Remark 7.4.5 to present an alternative method for inspecting the graph that was
pointed out to us by Travis Morrison. We note, however, that it does not outperform the
detection method given in this work.

• We fixed a small error in the code which led to slightly inaccurate experimental costs in Ta-
ble 7.3 and suboptimal choices of sets Nb for primes of bitsize ≥ 100. This affected the
experimental results reported in Tables 7.1, 7.6 and 7.7. We emphasise that these corrections
do not invalidate any of the experimental results in the published paper, but rather lead
to an improved choice of optimal set Nb and thus lead to a lower concrete complexity for
SuperSolver than what was reported. For example, for the SQIsign prime, the approximate
number of Fp-multiplications per node inspected at each step is now 55.7 rather than 58.0

(around a 1% improvement).

• We provide a more in-depth exposition on the algorithm used to compute square roots in Fp2
in Algorithm 7.1 and to take a step in the graph X1(Fp, 2) in Algorithm 7.2, with cost given
by Lemma 7.2.3. In Section 7.4.2, we give a tighter theoretical upper bound on the cost costN
of inspecting N -isogenous neighbours. We also formalise a heuristic in Remark 7.4.2 that
was implicitly stated in the published paper. These additions, along with Heuristic 7.4.6,

109

lead to a (reasonably tight) theoretical bound for the concrete cost of our implementation of
the Delfs–Galbraith algorithm Solver and our improvement SuperSolver in Section 7.4.4.

• Small editorial changes, such as notation changes to match the preliminaries.

Introduction

In its most general form, the supersingular isogeny problem asks an adversary to find an isogeny

ϕ : E1 → E2

between two given supersingular elliptic curves E1/Fp2 and E2/Fp2 . We emphasize that this is the
general problem, where we do not assume knowledge of the degree of the isogeny, or any torsion
point information. The best known classical attack against the supersingular isogeny problem is
the Delfs–Galbraith algorithm [132]. We recall Section 4.3 to fix notation. The first step computes
random walks in the N -isogeny graph (for some choice of N) to find isogenies φ1 : E1 → E′

1 and
φ2 : E2 → E′

2, such that E′
1/Fp and E′

2/Fp are subfield curves in Õ(p1/2) bit operations. The second
step searches for a subfield isogeny φ′ : E′

1 → E′
2 that connects ϕ1 and ϕ2, and it requires Õ(p1/4)

bit operations. It follows that the entire algorithm runs in Õ(p1/2) operations on average, with the
cost dominated by the first step, i.e., the search for paths to subfield curves. By Example 6.3.2,
this algorithm follows the general strategy described at the beginning of Part II with special subset
X1 ⊂ S1(Fp) being Sp. In this work, we investigate and improve the concrete complexity of the
Delfs–Galbraith algorithm.

Contributions

Solver. To the best of our knowledge, a precise complexity analysis of the Delfs–Galbraith al-
gorithm has not been conducted. We fill this gap by presenting an optimised implementation of
the Delfs–Galbraith algorithm, called Solver, and conducting experiments over many thousands of
instances of the subfield search problem to determine its concrete complexity. Though Solver finds
the full path, we focus on the optimisation and complexity of the bottleneck step: finding subfield
curves. These optimisations include:

• Choice of N . In their high-level description of the algorithm, Delfs and Galbraith do not
specify which N -isogeny graph to walk in. Framing the problem of taking a step in the
N -isogeny graph as computing the roots of a polynomial of degree N , in Solver we chose the
simplest and most efficient choice at the time of publication: N = 2.

• Fast square root finding in Fp2 . We use the techniques presented by Scott [281, §5.3] to
construct an optimised algorithm for finding square roots in Fp2 .

• Random walks in the 2-isogeny graph. We implement a depth-first search to find subfield
nodes in the 2-isogeny graph and give a precise complexity analysis on the number of Fp
operations required.

110

SuperSolver. The main contribution of this chapter is a new state-of-the-art algorithm for solving
the general supersingular isogeny problem, called SuperSolver. This is a variant of the Delfs–
Galbraith algorithm that exploits a combination of our new subfield root detection algorithm and
the use of modular polynomials. We show that we can efficiently determine whether a polynomial
f ∈ k′[X] has a root in a subfield k ⊂ k′, without finding any roots explicitly. Though this
algorithm works for general fields and polynomials (and may be of use in other contexts), we apply
it to the case where f = ΦN,p(X, j) ∈ Fp2 [X], i.e., where f is the N -th modular polynomial
evaluated at a supersingular j-invariant. This provides a means of quickly determining whether
there is an N -isogeny connecting the corresponding elliptic curve to a subfield curve: we develop
this NeighbourInFp subroutine in Section 7.3, and use it as the core of our SuperSolver algorithm
in Section 7.4.

Experiments and cryptographic applications. In Section 7.6, we conduct extensive experi-
ments using both our Solver and SuperSolver libraries, all of which show that SuperSolver performs
much faster than Solver. In Table 7.1, we give a taste of the types of improvements we see in search-
ing for subfield nodes over supersingular sets of various sizes, taking a number of primes from the
isogeny-based literature. These primes were specifically chosen because the Delfs–Galbraith algo-
rithm for the general supersingular isogeny problem is the best known classical attack against the
cryptosystems they target.1

The work in this chapter has implications on the classical bit-security of any supersingular
isogeny-based scheme for which the Delfs–Galbraith algorithm is the best known attack; this
includes the key exchange scheme B-SIDH [99],2 the GPS signature scheme [174, §4], and the
signature scheme SQIsign [125]. For any proposed instantiation of such schemes, our SuperSolver
suite allows the analysis in Section 7.6 to be conducted on input of any prime p, and determines
a precise estimate on the number of operations required (on average) to solve the corresponding
supersingular isogeny problem. Furthermore, in Section 7.4.4 we give a theoretical upper bound
for the cost of Solver and SuperSolver, subject to certain heuristics. This is especially accurate
when the cardinality of the associated class group is known (e.g., in the oriented case), which has
recently been shown to be feasible for primes up to 512 bits [32].

Availability of Software

Our Solver and SuperSolver algorithms are written in SageMath [311] and Python and can be found
at:

https://github.com/microsoft/SuperSolver.

Outline

We give the preliminaries in Section 7.1. In Section 7.2, we present our optimised instantiation of
the traditional Delfs–Galbraith algorithm, called Solver. In Section 7.3, we construct an efficient
algorithm to detect whether a polynomial has a root in a subfield. We use this algorithm to build
SuperSolver in Section 7.4. In Section 7.5, we present a worked example to highlight the differences

1At the time of publication, the best attack against B-SIDH was the Delfs–Galbraith algorithm.
2At the time of publication, B-SIDH was still secure.

111

https://github.com/microsoft/SuperSolver

Solver SuperSolver

Prime p
Nodes Fp-mults. Fastest Nodes Fp-mults.
inspected per node Sets N inspected per node

{3,5,7,9,11} 1,716,751 55.6
B-SIDH-p247 [99] 248,913 402 {3,5,7,9,11,13} 1,727,601 56.0

{3,5,7,11,13} 1,731,625 57.8

{3,5,7,9,11} 1,680,337 59.1
TwinSmooth-p250 [105] 233,507 427 {3,5,7,9,11,13} 1,699,825 59.1

{3,5,7,11,13} 1,697,769 59.8

{3,5,7,9,11} 1,716,751 55.7
SQISign-p256 [125] 248,915 403 {3,5,7,9,11,13} 1,727,601 55.9

{3,5,7,11,13} 1,731,625 57.8

{3,5,7,9,11,13} 1,529,025 63.1
TwinSmooth-p384 [105] 163,331 610 {3,5,7,9,11} 1,464,709 65.1

{3,5,7,9,11,13,17} 1,487,919 65.4

{3,5,7,9,11,13} 1,397,761 69.1
TwinSmooth-p512 [105] 127,511 784 {3,5,7,9,11,13,17} 1,391,645 70.0

{3,5,7,9,11,13,19} 1,351,509 72.1

Table 7.1: The number of nodes inspected per 108 field multiplications and for primes targeting schemes
where Delfs–Galbraith is the best known classical attack. The Solver column corresponds to optimised
Delfs–Galbraith walks in X1(Fp, 2) – see Section 7.2. The SuperSolver columns correspond to enabling our
fast subfield root detection algorithm with the three fastest sets N of N ’s (top to bottom) – see Section 7.4.
We also give the approximate number of Fp-multiplications per node inspected at each step, as computed
during the precomputation phase that predicts which sets N will perform fastest; for Solver we have
N = {}.

between both algorithms, and in Section 7.6 we present a number of implementation results that
illustrate the concrete improvements offered by SuperSolver.

7.1 Preliminaries

For this chapter, we require knowledge of supersingular elliptic curves and their isogenies (see Chap-
ter 2 and Section 4.1), the dimension 1 supersingular isogeny problem and the best attack against
it (see Section 4.3.1), the supersingular isogeny graph (see Section 4.2.1), and modular polyno-
mials (see Section 2.8.1.1). We now introduce requisite background for this chapter that was not
introduced in the preliminaries in Part I.

7.1.1 Factoring polynomials over finite fields

Let f(X) ∈ Fq[X] be a monic polynomial of degree N with q = pk for a prime p, and for the
purposes of this paper, assume that p is very large (i.e., cryptographically sized) and N is relatively
small (i.e., N < 100). The literature contains a number of methods for finding the irreducible
factors of f in Fq[x], and we briefly mention the most applicable and well-known algorithms for our
scenario. Berlekamp’s algorithm [23] factors f using an expected number of O(N3+N2 logN log q)

112

operations in Fq [289, Theorem 20.12]. This appears to be superior to the Cantor–Zassenhaus
algorithm [65], which uses an expected number of O(N3 log q) operations in Fq [289, Theorem
20.9], however one can take advantage of certain time-memory trade-offs to implement Cantor–
Zassenhaus so that it requires O(N3 +N2 log q) operations in Fq [289, Exercise 20.13]. Note that
both of these big-O complexities hide a number of subtleties, that Fq-inversions are included as
Fq operations, and moreover that both of these algorithms are probabilistic. Their deterministic
variants have worse complexities [289, §20.6].

7.1.2 Polynomial gcd

Euclid’s integer gcd algorithm is easily adapted to compute polynomial gcd’s [289, §17.3]. Com-
puting the gcd of two polynomials g, h ∈ Fq[x] requires O(deg(g) ·deg(h)) operations in Fq. Again,
here each Fq inversion is counted as a Fq operation. In order to make our algorithms run as fast as
possible, one of the necessary subroutines we derive in Section 7.3 is an inversion-free polynomial
gcd algorithm, for which we state an upper bound on the concrete complexity.

7.1.3 Measuring complexity

Throughout this paper we will avoid stating asymptotic (i.e., big-O-style) complexities in favour
of stating concrete ones. One of our goals in Section 7.2 and Section 7.4.4 is to replace the Õ(p1/2)

complexity of the original Delfs–Galbraith algorithm with a closed formula that can be used to
give precise estimates on the classical security of the relevant cryptographic instantiations. We will
use the metric of Fp-multiplications as convention, noting that it is relatively straightforward to
convert this into a more fine-grained metric (e.g., bit operations, machine operations, cycle counts,
gate counts, circuit depth, etc.) depending on the context and on the implementation of the Fp
arithmetic. For simplicity, we will count Fp-squarings as multiplications and ignore additions. We
justify this by noting that, roughly speaking, the ratio of multiplications to additions in all the
algorithms in this work are similar, and the complexity of Fp-additions have a minimal impact on
any of the aforementioned metrics.

7.1.4 Subfield search complexity determines concrete bit security

Both the Solver implementation detailed in Section 7.2 and the SuperSolver implementation detailed
in Section 7.4 solve all instances of the general supersingular isogeny problem. On input of any
prime p and any two supersingular j-invariants in Sp2 , both implementations will always terminate
with an isogeny that solves the corresponding problem. We emphasise that henceforth our sole
focus is on the Õ(p1/2) subfield search phase of the Delfs–Galbraith algorithm. Finding a path
between subfield nodes requires Õ(p1/4) operations, which is negligible in both the asymptotic
sense and in the sense of obtaining cryptographic security estimates. To see this, suppose the
asymptotic Õ(p1/2) complexity of the first phase is replaced by a concrete complexity of cp · p1/2,
and the asymptotic Õ(p1/4) complexity of the second phase is replaced by a concrete complexity
of dp · p1/2, where cp and dp are polynomials in log p. The total complexity of the Delfs–Galbraith
algorithm is then

cp · p1/2 + dp · p1/4.

113

For primes of cryptographic size, small changes in cp have an immediate influence on the total
runtime of the algorithm, while much larger changes in dp will not play a part in the bit security
of the problem. For p > 2200, a factor 2 change in cp changes the bit security of the problem by
1, while dp would have to change by a factor of at least 250 to have the same impact on the bit
security.

7.2 An optimised implementation of the Delfs–Galbraith al-

gorithm

We begin the exploration into attacking the dimension one superspecial isogeny problem by pre-
senting Solver, an optimised implementation of the first, bottleneck step of the Delfs–Galbraith
algorithm: searching for subfield curves in X1(Fp, N). In Section 7.2.4, we experimentally deter-
mine the concrete complexity of our optimised algorithm Solver, which will set the stage for the
improvements given in Section 7.4 on the concrete complexity of the Delfs–Galbraith algorithm.

7.2.1 Efficient square root computation in finite fields

To take steps in the graph X1(Fp, 2), we need to compute square roots in Fp2 . Optimal computation
of square roots in extension fields of large characteristic requires careful attention to detail. A
2013 paper by Adj and Rodríguez-Henríquez [230] cost the process of computing square roots in
Fp2 at two Fp residuosity tests, two Fp square roots, and one Fp inversion, for a total of five
exponentiations in Fp. In [281, §5.3], Scott shows that these operations can be combined in a
clever way to significantly reduce this cost. The inputs into the Tonelli-Shanks Fp square root
algorithm [231, Algorithm 3.34] can be tweaked in such a way that the two residuosity tests are
absorbed into the two square roots. Moreover, Scott shows that most of the inversion cost can
also be absorbed by application of Hamburg’s combined ‘square-root-and-inversion’ trick [180]. In
addition, there are a handful of Fp-multiplications and additions (whose precise number depends
on the maximum integer e such that 2e | p − 1) that either update the Tonelli-Shanks outputs
depending on the residuosity outcomes or collect and combine the results according to the formula
in [281, §5.3].

We follow Scott to construct a general square root algorithm Sqrt that is highly optimised
with respect to the number of Fp operations it incurs. For more details on how this algorithm is
constructed, refer to [281]. Let Fp2 = Fp(α). Given a ∈ Fp2 , it will compute b ∈ Fp2 such that
b2 = a (assuming such a b exists), using two subroutines:

• consts ← TonelliShanksConstants(p): on input a prime p, this algorithm computes the fol-
lowing constants:

– β := α2, a quadratic non-residue in Fp.

– e, the maximum integer such that 2e | p− 1 (so e < log(p));

– z := β(p−1)/2e , a precomputed 2e-th root of unity;

– c := (p− 2e − 1)/2e+1, so that the progenitor of x is y := xc (as defined by Scott [281,
§1.3]).

114

The algorithm then outputs

consts = {β, 2−1, e, z, c, βc, 2e − 1, e+ 1, β−1},

where the inverses are computed modulo p.

• s, b ← TonelliShanks(x, y, consts): on input x, y ∈ Fp, and consts defined as above, this
algorithm computes b := (xy2)2

e−1

to determine if x is a quadratic residue (see [281, §2]). If
b = 1, then x is a quadratic residue, and the algorithm runs the Tonelli–Shanks algorithm
(see, for example, [281, pg. 2] for pseudocode) on input (x, y, consts) to compute s ∈ Fp
such that s2 = x. Otherwise, if b ̸= 1, then x is a quadratic non-residue, and the algorithm
runs the Tonelli–Shanks algorithm on input (xβ, yβc, consts) to compute s ∈ Fp such that
s2 = xβ (note β and βc are precomputed and stored as the first and sixth elements of consts).
The algorithm outputs s and b. Each call to TonelliShanks costs at most 1

2 (e
2 + 7e+ 4) Fp-

multiplications.

Algorithm 7.1 Sqrt: given a ∈ Fp2 where Fp2 = Fp(α), compute b ∈ Fp2 such that b2 = a (if it
exists).

Input: a ∈ Fp2
Output: b ∈ Fp2 with b2 = a.

1: consts← TonelliShanksConstants(p)
2: β, 2−1, e, z, c, βc, 2e − 1, e+ 1, β−1 ← consts

3: a0 + a1α← a
4: δ ← a20 − βa21
5: y ← δc

6: sδ, b← TonelliShanks(δ, y, consts)
7: if b ̸= 1 then
8: return ⊥ {a is a quadratic non-residue}
9: end if

10: x← 2−1(a0 + sδ)
11: y ← xc

12: sx, b← TonelliShanks(x, y, consts)
13: x1 ← x2

e−1

14: a1(2x)
−1 ← x1 · a1y2

e+1 · 2−1 {compute y2
e+1

with repeated squarings}
15: if b ̸= 1 then
16: b0 ← sx · a1(2x)−1

17: b1 ← sx · β−1

18: else
19: b0 ← sx
20: b1 ← sx · a1(2x)−1

21: end if
22: return b0 + b1α

The algorithm has applications beyond taking steps in X1(Fp, 2). Indeed, we will reuse this
algorithm in both Chapter 8 and Chapter 11.

The two calls to TonelliShanks costs (e2+7e+4) Fp-multiplications. In Lines 5, 11 we compute
exponentiation by c, and in Line 13 exponentiation by 2e − 1. The other lines of Algorithm 7.1

115

requires at most (e+ 10) Fp-multiplications. We remark that Line 1 is often done as a precompu-
tation as TonelliShanksConstants depends only on p, so we do not include it in the cost. In total,
Sqrt requires at most 3 Fp-exponentiations and (e2 +8e+14) Fp-multiplications where e < log(p).

Remark 7.2.1. The fixed exponentiations that take place in Lines 5, 11 and 13 could be further
optimised for a specific p by tailoring a larger window or a different addition chain. For our
purposes in this chapter, the impact of this improvement would be minor.

7.2.2 Taking a step in X1(Fp, 2)

We take steps in the isogeny graph X1(Fp, N) using the modular polynomial ΦN (X,Y) of level
N , defined in Section 2.8.1.1. Recall from Section 4.3.1 that we can take steps in X1(Fp, N) by
choosing one of the DN,1 − 1 roots of ΦN (X, jc)/(X − jp), at random, where jc is the current
j-invariant, jp is the previous j-invariant, and

DN,1 :=

n∏
i=1

(ℓi + 1)ℓei−1
i , for N =

n∏
i=1

ℓeii .

The first parameter that we specify is N , i.e., the isogeny graph to walk around in. Considering
DN,1 and the complexity of factorisation algorithms given in Section 7.1.1, we chose N = 2 to
obtain the most efficient and simplest choice where we are able to take advantage of fast explicit
methods for computing square roots in Fp2 .

After stepping from jp ∈ Fp2 to jc ∈ Fp2 , a non-backtracking walk in X (Fp, 2) will step to one
of two new nodes: j0 and j1. These are computed by solving the quadratic equation that arises
from the modular polynomial ΦN (X,Y) with N = 2:

Φ2(X,Y) = −X2Y 2 +X3 + Y 3 + 1488 · (X2Y + Y 2X)− 162000 · (X2 + Y 2)

+ 40773375 ·XY + 8748000000 · (X + Y)− 157464000000000.

The three neighbours of jc in X (Fp, 2) are jp, j0, and j1, meaning that Φ2(X, jc) factorises as

Φ2(X, jc) = (X − jp)(X − j0)(X − j1).

This yields a quadratic equation, whose solutions are j0, j1, defined by X2 + αX + β = 0, where

α = −j2c + 1488 · jc + jp − 162000,

β = j2p − j2c jp + 1488 · (j2c + jcjp) + 40773375 · jc − 162000 · jp + 8748000000.

Computing these coefficients costs a small, constant number of Fp operations, so the process of
computing both j0 and j1 from jp and jc boils down to solving the quadratic equation, which essen-
tially requires one Fp2 square root, for which we use the algorithm Sqrt described in Section 7.2.1.
We summarise the algorithm to take a step in X1(Fp, 2) in Algorithm 7.2.

Remark 7.2.2. In practice, in Algorithm 7.2, we check if the input to Sqrt (namely δ := α2− 4β)
is Fp or in Fp2\Fp before computing the square root. If it lies in Fp, we compute this square root in

116

Algorithm 7.2 Given a pair of j-invariants (jp, jc) take a non-backtracking step in X1(Fp, 2).

Input: Previous j-invariants jp ∈ Fp2 , current j-invariant jc ∈ Fp2
Output: j ∈ Fp2 neighbouring jc with j ̸= jp.

1: α← jc(jc + 1488)− jp + 162000
2: β ← j2p − j2c jp + 1488 · (j2c + jcjp) + 40773375 · jc − 162000 · jp + 8748000000
3: δ ← α2 − 4β
4: δ′ ← Sqrt(δ)
5: j ← 2−1(α+ δ′)
6: return j

Fp and the search for a subfield node has terminated. Otherwise, we run Sqrt on input δ ∈ Fp2\Fp
to obtain δ′ ∈ Fp2 such that (δ′)2 = δ, if it exists.

To understand the concrete complexity of Solver and SuperSolver, presented in Section 7.4, it
is important to determine the concrete cost of taking a step in X1(Fp, 2) using Algorithm 7.2.

Lemma 7.2.3. The number of Fp-multiplications required to take a step in X1(Fp, 2) using Algo-
rithm 7.2 is coststep where

coststep ≤ e2 + 8e+ 31 + 2Exp(c) + Exp(2e − 1),

e is the maximum positive integer such that 2e | p− 1, c = (p− 2e− 1)/2e+1 and Exp(λ) is the cost
of exponentiation of an element in Fp by λ ∈ Fp.

Proof. Lines 1, 2 and 3 can be done with at most 16 Fp-multiplications as shown in the implemen-
tation accompanying the chapter. As discussed in Section 7.2.1, our implementation of the square
root algorithm Sqrt used in Line 4 requires (e2 +8e+14) Fp-multiplications, 2 Fp-exponentiations
by c and 1 Fp-exponentiation by 2e− 1. As 2−1 ∈ Fp can be precomuted for a fixed p, Line 5 costs
1 Fp-multiplication.

Remark 7.2.4. Note e = λ log(p) for 0 ≤ λ ≤ 1. When λ = 1, we only require 1 exponentiation
by 2e − 1, and we compute the exponentiation by c instead using a handful of multiplications.
Similarly, if λ = 0, we only compute 2 exponentiations. In this way, the precise cost of taking a
step depends heavily on e.

Remark 7.2.5. There is no traditional elliptic curve arithmetic found in either Solver or Super-
Solver. All the steps taken within X1(Fp, 2) and the rapid inspections conducted in X1(Fp, 2) use
the modular polynomials. We point out there may be specific instances of p where one could per-
form walks faster than repeatedly solving the quadratic polynomial Φ2,p(X, j) by, say, employing
Vélu’s formulas [314] with the optimal strategies of De Feo, Jao, and Plût [123]. For example,
with a prime p = 2a3b − 1, the price of computing a 2a-isogeny (i.e., walking through a nodes in
X1(Fp, 2)) in this way may be cheaper than the price of computing a square roots in Fp2 (note that
the latter reveals 2 nodes each time). However, computing general (

∏
Nei
i)-isogenies from kernel

elements is much more expensive than Ne-isogenies when N ∈ {2, 3}, and one covers fewer nodes
in Sp2 per isogeny when the Ni grow larger. Therefore, particularly in the case of general primes,

117

it is unlikely that using Vélu’s formulas will be competitive with the binary tree depth-first search
in X1(Fp, 2). For the primes in Table 7.1, further investigation maybe be warranted.

Remark 7.2.6 (Radical isogenies). Another alternative to solving the quadratic equation that
arises from Φ2(X, jc)/(X − jp) is to instead take steps in X1(Fp, 2) using formulas for radical
isogenies [73]. For example, given a supersingular Montgomery curve parameterised as EA : y2 =

x3 + Ax2 + x or as Eα = x(x − α)(x − 1/α), one can compute non-backtracking chains of 2-
isogenies as either A → A′ → A′′ . . . , or as α → α′ → α′′ . . . , rather than computing the chain
of j-invariants j → j′ → j′′ . . . , as we do. Computing the next value in all of these chains
requires one square root (which dominates the cost for primes of cryptographic size) and a small
handful of additional field operations, the number of which depends on the choice of chain. In the
case of computing the chains A → A′ → A′′ . . . or α → α′ → α′′ . . . , the number of additional
operations are fewer (see [68] and [62]) than those which we incur using the modular polynomial,
however we have not opted to exploit this minor speed-up for the following reasons. Firstly, it
is not true in general that j(EA) ∈ Fp implies A ∈ Fp or that j(Eα) ∈ Fp implies α ∈ Fp.
Since j(EA) = 256(A2 − 3)3/(A2 − 4), in general there are six values of A corresponding to a
given j. Similarly, since j(Eα) = 256(α4 − α2 + 1)3/(α4(α2 − 1)2), in general there are twelve
values of α corresponding to a given j. For large primes it is typically the case that most (or
all) of the A’s and α’s corresponding to a given j ∈ Sp are not defined over Fp. Thus, if radical
isogenies were used to compute chains of α’s or A’s in the context of Delfs–Galbraith, we would
need to compute a value that determines whether the corresponding j lies in Fp. We note that
this can be achieved without inverting the denominators in the expressions for j(Eα) or j(EA),
i.e., (a + b · β)/(c + d · β) is in Fp if and only if ad = bc for a, b, c, d ∈ Fp and Fp2 = Fp(β).
For these reasons, the original Delfs–Galbraith walk in X1(Fp, 2) is likely to save a small, fixed
number of multiplications per 2-isogeny by computing chains of A’s or α’s instead of j’s. In future
work, it would therefore be interesting to conduct a more in-depth exploration of the benefits of
using radical isogenies in Solver. We emphasize, however, that when invoking our fast subfield root
detection in the sections that follow, it is critical (for Algorithm 7.4) that the j-invariants of each
node are computed explicitly, so that the higher degree-DN,1 modular polynomials can be used to
probe for N -isogenous subfield neighbours. This subsequent computation of the j-invariant seems
to require an additional field exponentiation (we could not see a way to merge the square roots and
inversions into one exponentiation in these instances), which would kill the potential advantage of
radical isogenies in the optimised SuperSolver.

Remark 7.2.7 (Alternative modular functions). There are several well-known modular functions
other than the j-function – see [302]. A natural question in the context of this paper is whether
any such functions can be used to make the search for subfield nodes in supersingular isogeny
graphs more efficient. For example, the modular polynomials for Weber’s f -function [301] are the
same degree as those of the j-function, but have much smaller coefficients, many of which are
zero. If these more compact modular polynomials could be used in the same way as those for the
j-function, the practical gains would be significant. However, their applicability in the context of
SuperSolver appears to be hampered by reasons similar to those discussed in Remark 7.2.6. Weber’s
f is related to j via j = (f24 − 16)3/f24, meaning there can be as many as 72 f ’s corresponding
to a single j-invariant, and it is not true in general that given j ∈ Fp, the corresponding Weber

118

invariant f lies in Fp. Although this makes the Weber polynomials unreliable replacements in the
context of the SuperSolver algorithm, our search for alternative modular functions that would be
compatible with SuperSolver was far from exhaustive, and it is likely that the j-function is not
optimal across all of them. We leave any further investigations in this direction as future work.

7.2.3 The depth-first search in X1(Fp, 2)

Repeating the process described above allows us to perform the search for subfield nodes in
X1(Fp, 2). Recalling from Section 4.2.1 that X1(Fp, 2) is an expander graph, there is a short
path (of length approximately log(p)) between any two nodes. Therefore, we use a depth-first
search in a binary tree with d levels to navigate the supersingular isogeny graph. We write jm,n
for the n-th node at level m, where 0 ≤ m ≤ d and 0 ≤ n ≤ 2m − 1. The first three levels are
depicted in Figure 7.1.

j0,0

j1,0

j2,0 j2,1

j1,1

j2,2 j2,3

Figure 7.1: Levels 0, 1, and 2 of the binary tree in the depth first search of X1(Fp, 2).

We initialise the root node j0,0 as the target j ∈ Fp2\Fp, and set j1,0 and j1,1 as two of its
three neighbours3 in X1(Fp, 2). The depth first search starts by setting jc = j1,0 and jp = j0,0. We
then solve the quadratic equation above to obtain j2,0 and j2,1, and repeat this procedure with
jc = ji+1,0 and jp = ji,0 for 1 ≤ i ≤ d − 1 until the leftmost leaf jd,0 is computed, and the path

stack is fully initialised as
path = [j0,0, j1,0, . . . , jd−1,0, jd,0].

To avoid any waste, we also maintain a stack of the other solution to the quadratic equations that
were computed along the way, which we call sibling nodes

siblings = [j1,1, . . . , jd−1,1, jd,1].

The algorithm then proceeds back up the levels by popping path until its last element is the root of
a subtree that has not been checked in its entirety. At this point siblings is popped and pushed
into path. When the last element of path is the root of a subtree that has not been exhausted,
we initialise the process of solving quadratic equations, pushing one of the two solutions into path

and the other into siblings until path contains d+1 elements. Each time the quadratic equation
solver is called, the two roots (i.e., j-invariants) are immediately checked; if either of them lie in Fp,
it is added to path and the process is terminated. Otherwise, the process is repeated recursively

3Initially we do not have a jp, so all three neighbours can be computed using generic root finding; our code does
this during the setup phase.

119

until path = [j0,0], in which case the 2d+1 − 1 nodes in the tree have been exhausted without
finding a solution. To guarantee that a solution is found, one could increase d and start again, but
our code proceeds by simply storing the first (leftmost) leaf and its parent in separate memory so
that the process can restart here and avoid recomputing any prior j’s. As Delfs and Galbraith
point out, setting the depth d = 1

2 log p should be enough. Since the number of nodes in the tree is
2d, increasing d by ϵ makes the failure probability diminish by 1/2ϵ. Setting ϵ = 10 was sufficient
in all of our experiments.

Finally, this process parallelises perfectly [132, §4]. For P processors, one can simply compute a
binary tree of depth ⌈logP ⌉ during setup and distribute P of the leaf nodes as individual starting
points.

7.2.4 Concrete complexity

Table 7.2 reports on experiments conducted using Solver, the optimised instantiation of the tra-
ditional Delfs–Galbraith walk. For each bitlength between 21 and 40, we solved 10,000 instances
of the subfield search. In each case we chose 100 random primes and, for each prime, 100 pseudo-
random j-invariants in Sp2 . The numbers in each column report the averages (as base-2 logarithms)
of these search complexities. We visualise this information in Figure 7.2.

In all cases the number of Fp-multiplications is found to be

#(Fp mults.) = c · √p · log p,

with 0.75 ≤ c ≤ 1.05. In Section 7.4.4, we shed more light on the concrete complexity of both
Solver and SuperSolver and put these experimental observations on theoretical footing.

Bitlengths of primes p 21 22 23 24 25 26 27 28 29 30

Av. number of nodes visited 8.8 9.4 10.0 10.3 10.9 11.4 11.9 12.3 13.1 13.5
Av. number of Fp-multiplications 14.5 15.0 15.7 16.0 16.7 17.2 17.8 18.2 19.0 19.5

Bitlengths of primes p 31 32 33 34 35 36 37 38 39 40

Av. number of nodes visited 13.5 14.2 14.7 15.3 15.8 16.3 17.1 17.3 17.6 18.1
Av. number of Fp-multiplications 19.5 20.5 20.8 21.3 21.9 22.4 23.2 23.6 24.1 24.6

Table 7.2: The concrete cost of the subfield search phase of the Delfs–Galbraith over small fields of
various bitlengths. Further explanation in text.

7.3 Fast subfield root detection

In this section we derive a method for determining whether a polynomial f(X) = anX
n + ... +

a1X + a0 ∈ Fqd [X] with d ≥ 2 has a root lying in the subfield Fq, where q is a power of prime p.
Though this can be achieved by factoring the polynomial, the methods described in Section 7.1.1
become too costly for our purposes; the number of Fq operations required depends on the size of
q, which hampers their relative efficiency as q grows large. Our aim in this section is to detail a
much faster algorithm that detects whether a root lies in a subfield and show that the number of

120

21 23 25 27 29 31 33 35 37 39

15

20

25

log2(p)

A
ve

ra
ge

nu
m

be
r

of
F p

-m
ul

ts
.

21 23 25 27 29 31 33 35 37 39
8

10

12

14

16

18

log2(p)

A
ve

ra
ge

nu
m

be
r

of
no

de
s

vi
si

te
d

Figure 7.2: Visualising the data from Table 7.2 on the concrete cost of the subfield search phase of the
Delfs–Galbraith over small fields of various bitlengths. The graph on the left gives the average number of
Fp-mulitplications required to run the subfield search in the Delfs–Galbraith algorithm for various primes
p, whereas the graph on the right shows the average number of nodes visited in this search. See more
information in text.

Fq operations required by our algorithm only depends on the degree of f and the degree of the
extension d.

As the algorithms in this section may be of independent interest, we leave them as general
as possible before specialising back to the application at hand in Section 7.4. The results up
to Proposition 7.3.3 are presented for general finite field extensions of the form Fqd/Fq, but we
will later specialise to the quadratic extensions of prime fields, i.e., where q = p and d = 2. The
inversion-free gcd in Algorithm 7.3 is derived for an arbitrary polynomial ring k[X], but we will
only need to use it in Fp[X].

For a polynomial in Fqd [X], we will reduce the problem of detecting a root in Fq to computing
the greatest common divisor of d related polynomials g1, ..., gd. In the case where d > 2, we will
need to compute the gcd of more than two polynomials. This can be done by recursively computing
the gcd of two polynomials and using the following identity:

gcd(g1, g2, ..., gd) = gcd(g1, gcd(g2, ..., gd)).(7.1)

As we aim to minimise the number of Fq multiplications needed to compute the gcd, we construct
these polyomials so that they are defined over Fq (rather than over Fqd). To achieve this, we will
need two results. The first is a theorem by Lidl and Niederreiter [220, Theorem 2.24], which we
reproduce here for completeness.

Theorem 7.3.1. Let k′ be a finite extension of a finite field k, both considered as vector spaces over
k. Then the linear transformations from k′ into k are exactly the mappings Lβ(α), for β ∈ k′, where
Lβ(α) = Trk′/k(βα) for all α ∈ k′, where Tr is the trace map of the extension k′/k. Furthermore,
we have Lβ ̸= Lγ whenever β, γ are distinct elements of k′.

The second result we will need is the following lemma.

121

Lemma 7.3.2. For n ∈ N, let f1, ..., fn ∈ Fqd [X] be polynomials and A ∈ GLn(Fqd). Defining
(g1, ..., gn) := A · (f1, ..., fn), we have

gcd(f1, ..., fn) = gcd(g1, ..., gn).

Proof. If a polynomial h ∈ Fqd [X] divides f1, ..., fn, then h divides any linear combination of the
f1, ..., fn. Therefore, h divides g1, ..., gn. Since A is invertible, by swapping the roles of gi and fi

we see that the converse holds.

We are now ready to present the main result of this section.

Proposition 7.3.3. For some d ≥ 2, let π be the q-power Frobenius endomorphism in Gal(Fqd/Fq)
and consider a polynomial f(X) = anX

n+ ...+a1X+a0 ∈ Fqd [X]. Define the action of π on such
a polynomial by π(f) := π(an)X

n+ ...+π(a1)X +π(a0) ∈ Fqd [X]. Let β be a primitive element of
the extension Fqd/Fq, in the sense that the field extension is generated by a single element β, i.e.,
Fq(β) = Fqd . For i = 1, .., d, define the following polynomials over Fqd :

gi :=
d−1∑
j=0

πj(βi−1f).

Then gi(X) ∈ Fq[X], and gcd(g1, ..., gd) divides f . In particular, if gcd(g1, ..., gd) is of degree 1,
then f has a root in Fq. Furthermore, if gcd(g1, ..., gd) = 1, then f(X) does not have any roots in
Fq.

Proof. Using the notation in Theorem 7.3.1, we have

gi(X) = [(βi−1an + π(βi−1an) + ...+ πd−1(βi−1an))X
n + ...+ (βi−1a0 + ...+ πd−1(βi−1a0))]

=

n∑
m=0

Lβi−1(am)Xm.

By Theorem 7.3.1, for all i = 1, ..., d and m = 0, . . . n, we have Lβi−1(am) ∈ Fq, implying that
gi(X) ∈ Fq[X]. Setting (d× d) matrix A to be

A =

1 1 . . . 1

β π(β) . . . πd−1(β)
...

...
. . .

...
βd−1 π(βd−1) . . . πd−1(βd−1)

 =

1 1 . . . 1

β βq . . . βq
d−1

...
...

. . .
...

βd−1 (βd−1)q . . . (βd−1)q
d−1

 ,

we have (g1, ..., gd) := A · (f, π(f)..., πd−1(f)). As for Vandermonde matrices [182, §6.2], we find
det(A) =

∏
0≤i<j≤d−1(β

qj − βqi), which is non-zero for β a primitive element of the extension
Fqd/Fq and so A ∈ GLd(Fqd). By Lemma 7.3.2, we have

gcd(f, π(f), ..., πd−1(f)) = gcd(g1, ..., gd),

therefore gcd(g1, ..., gd) | f . If gcd(g1, ..., gd) is of degree 1, then (X − r) | f for some r ∈ Fq, and
so f has a root in Fq.

122

We further note that gcd(f, π(f), ..., πd−1(f)), and therefore gcd(g1, ..., gd), is precisely the
largest divisor of f that is defined over Fq. As a result, if gcd(g1, ..., gd) = 1, then f(X) does not
have any roots in Fq.

7.3.1 Detecting subfield nodes

The proof of Proposition 7.3.3 tells us that gcd(g1, ..., gd) is precisely the largest divisor of f ∈
Fqd [X] that is defined over Fq[X]. In our target application of searching for subfield nodes in
large supersingular isogeny graphs, i.e., when d = 2 and q = p, we will most commonly encounter
gcd(g1, g2) = 1, which immediately rules out subfield neighbours in the N -isogeny graph. Non-
trivial gcd’s will, with overwhelmingly high probability, be of degree 1 and reveal a single subfield
node; this is why our implementation of Algorithm 7.3 below terminates and returns true when
the degree of the gcd is 1.

For large supersingular isogeny graphs, the only way for the degree of gcd(g1, g2) to be larger
than 1 is when a given j-invariant is N -isogenous to multiple subfield nodes, or when a given
j-invariant is N -isogenous to conjugate j-invariants in Fp2 . A real-world attack should check any
non-trivial gcd, since either of these scenarios are a win for the cryptanalyst; the latter case reveals
information about the secret endomorphism ring of the target isomorphism class (see [216, §5.3]),
and the former case gives multiple solutions to the subfield search problem.

In our scenario where d = 2, we see that π(β) + β = 0, meaning that πk(β) = (−1)kβ. As a
result, to detect a subfield root, we compute gcd(g1, βg2) where g1 = f + π(f) and g2 = f − π(f).
In this case we do not need to calculate any more powers of β, and we only need to do one gcd

computation.

7.3.2 Inversion-free polynomial GCD

To complete the detection of roots in a subfield, we must compute the gcd of polynomials in
polynomial ring k[X], where k is a field. In Algorithm 7.3, we modify Euclid’s polynomial-adapted
algorithm [289, §17.3] to compute the gcd of two polynomials g, h ∈ k[X] while avoiding inversions
in k. We use LC(f) to denote the leading coefficient of the polynomial f . Note that, for the
purposes of incorporating it into our target application of subfield searching in the next section,
the algorithm outputs the boolean true when the gcd has degree 1 in k[X].

Proposition 7.3.4. Given input g, h ∈ k[X] such that deg g ≥ deg h, Algorithm 7.3 terminates
using at most

1

2
(deg g + deg h− 1)(deg g + deg h+ 6)

multiplications in k.

Proof. Line 1 incurs at most deg g + deg h + 2 multiplications in k. Setting r0 := r, s0 := s, we
define this to be loop 0. For i ≥ 1, we denote by ri, si (where deg si ≥ deg ri) the polynomials in
loop i of Line 2 to Line 8. Using this notation, we move to Line 9 when deg ri ≤ 1 or ri = si. Now,
in loop i ≥ 1 we replace ri by ri − Xdeg ri−deg sisi, meaning deg ri−1 − deg ri ≥ 1, and compute
ri ·LC(si) and si ·LC(ri). This requires deg ri+deg si+2 multiplications in k. In the worst case,

123

Algorithm 7.3 InvFreeGCD: Inversion-free gcd

Input: Polynomials g, h ∈ k[X], such that deg g ≥ deg h.
Output: A boolean indicating if g, h have a non-trivial gcd of degree 1.

1: Initialise r, s← LC(h) · g,LC(g) · h
2: while deg r ≥ 1 and r ̸= s do
3: r ← r −Xdeg r−deg s · s
4: r, s← LC(s) · r,LC(r) · s
5: if deg r ≤ deg s then
6: r, s← s, r
7: end if
8: end while
9: return ¬(deg r = 1 and r ̸= s)

we have deg ri−1−deg ri = 1 for i ≥ 1, where the number of multiplications will decrease by exactly
1 after each loop. In the final loop we have deg ri,deg si = 1, so we compute 4 multiplications in
k. In summary, in the worst case we begin with deg g + deg h+ 2 multiplications, decreasing by 1
until we get to 4. Therefore, the total number of multiplications is at most

∑deg g+deg h+2
n=4 n, which

is the bound in the statement of the proposition.

In summary, Proposition 7.3.3 shows that detecting subfield roots of f ∈ Fqd [X] amounts to
computing the gcd of d related polynomials in Fq[X]. We showed that computing this gcd is
simpler when d = 2. Proposition 7.3.4 gives an upper bound on the number of Fq multiplications
required to compute such a gcd in Fq[X]. In the next section we use these tools to build a faster
algorithm for finding subfield nodes in supersingular isogeny graphs.

7.4 SuperSolver

SuperSolver is an algorithm which, given two j-invariants in Fp2 corresponding to two supersin-
gular curves E1/Fp2 and E2/Fp2 , will, on average, solve the supersingular isogeny problem with
lower concrete complexity than the traditional Delfs–Galbraith Solver algorithm described in Ex-
ample 6.3.2. As in the Delfs–Galbraith algorithm, SuperSolver takes non-backtracking walks in
X1(Fp, 2) until they hit a j-invariant in Fp, i.e., a j in the special subset X1 as defined in Defi-
nition 6.3.1. However, at each step of the random walk, SuperSolver also inspects X1(Fp, N), for
carefully chosen N > 2, to efficiently detect whether j has any N -isogenous neighbours in X1.
Traditionally, inspecting X1(Fp, N) for a subfield neighbour requires fully factoring a degree-DN,1

polynomial (where we recall the definition of DN,1 from Equation (2.7)) and determining whether
any of the roots lie in Fp. Performing this for each N would require O(N3 +2N2 log p) operations
in Fp2 using the modified Cantor–Zassenhaus algorithm (see Section 7.1.1), which is prohibitively
costly.

Following the results from Section 7.3, however, SuperSolver conducts the inspection of X1(Fp, N)

with O(N2) multiplications in Fp. We make this count precise later in this section. Crucially, the
number of Fp operations is no longer dependent on the size of p, and this means that as p grows
large, the set of N ’s that are optimal to use also grows, and the more profitable (relatively speaking)

124

SuperSolver becomes.
We reiterate that, although both Solver and SuperSolver return the full isogeny between E1/Fp2

and E2/Fp2 , our discussion focusses on the bottleneck problem of finding an isogeny from E1/Fp2
(resp. E2/Fp2) to E′

1/Fp (resp. E2/Fp). If, at some node j, we detect an N -isogenous neighbour
in Fp, SuperSolver will then factorise the degree-DN,1 polynomial ΦN,p(X, j) to determine the
subfield j-invariant. We view this as a post-computation step, since we are only interested in the
concrete complexity of the average step taken in the walk (which we assume does not find a subfield
node). Note that the paths between E1/Fp2 and E2/Fp2 returned by both Solver and SuperSolver
both look the same: in general, both start and finish with a chain of 2-isogenies that is connected
in the middle by a chain of different prime-degree isogenies. The main difference, as the results
in Section 7.6 illustrate, is that 2-isogeny chains returned by SuperSolver at each end are much
shorter.

Recall that in the original Delfs–Galbraith algorithm, each step consists of finding the roots of
a quadratic equation in Fp2 [X], which reveals two neighbouring nodes in X1(Fp, 2). In SuperSolver,
after forming a list of carefully chosen N > 2, each step will also include the rapid inspection of
X1(Fp, N) for every N in this list. Though the inspection of the neighbours in X1(Fp, N) increases
the total number of Fp-multiplications at each step, more nodes are checked. We first describe
the process of taking a step in SuperSolver, and then move to describing how to choose the list of
N > 2 in order to minimise the number of Fp-multiplications per node inspected.

Remark 7.4.1 (Odd N only). With the exception of the leaf nodes in the last level of the
binary tree, it is redundant to perform rapid node inspections in X1(Fp, 2N) if rapid inspections in
X1(Fp, N) are also part of the routine, since the latter inspections will detect (or exclude) subfield
nodes at the next level of the walk down the tree. We therefore find it optimal to only include odd
Ni in the lists constructed at the end of this section. Note that there is no redundancy in including
odd composite Ni’s in our lists, even if they have proper divisors that are also in the list.

7.4.1 Rapid inspection of the N-isogenous neighbours

We describe the algorithm NeighbourInFp given in Algorithm 7.4. On input of N , j ∈ Fp2 and p,
it outputs true if j is N -isogenous to a j′ ∈ Fp, and false otherwise.

Recall that the degree of ΦN,p in X and Y is DN,1. The first subroutine of NeighbourInFp

is EvalModPolyj(N, j, p): it evaluates ΦN,p(X,Y) at Y = j by computing j2, ..., jDN,1 , and then
multiplying these by the corresponding coefficients of ΦN,p, returning the coefficients aDN,1

, ..., a0

of X in ΦN,p(X, j). Note that, since we typically have a list of multiple N , i.e., N1 < · · · < Nk,
the powers of j (up to DNk

) are computed once-and-for-all at every j, and recycled among the
Ni < Nk. We follow Section 7.3 to detect whether ΦN,p(X, j) ∈ Fp2 [X] has a root in Fp. Letting
β ∈ Fp2 be such that Fp2 = Fp(β), we first compute the related polynomials

g1 := (1/2) · [ΦN,p(X, j) + π(ΦN,p(X, j))] and

g2 := (−β/2) · [ΦN,p(X, j)− π(ΦN,p(X, j))],

where π ∈ Gal(Fp2/Fp) is the Frobenius endomorphism. By Proposition 7.3.3, we have g1, g2 ∈

125

Fp[X] and

deg (gcd(g1, g2)) = 1 =⇒ ΦN,p(X, j) has a root in Fp.

We then complete the inspection of X1(Fp, N) by using Algorithm 7.3 to calculate gcd(g1, g2). If
gcd(g1, g2) ̸= 1, then (for large enough p) it is overwhelmingly likely that deg (gcd(g1, g2)) = 1, as
detailed in the following remark.

Remark 7.4.2. As discussed in Section 7.3.1, if E has a neighbour with j-invariant in Fp, then Al-
gorithm 7.4 will return true with high probability. Indeed, otherwise E is N -isogenous to multiple
subfield curves, which (heuristically) has probability at most O(p−1/4), or E is N -isogenous to an
elliptic curve with j-invariant π(j(E)) ∈ Fp2 , which (assuming GRH) has probability O(p−1/2) [148,
Theorem 3.9].

Due to this, our implementation uses the degree of the gcd as the criterion for terminating the
subfield search. Another possibility is to terminate whenever gcd(g1, g2) is non-constant, and then
to inspect the higher degree gcd according to the two possible scenarios discussed in Section 7.3.1.

Note that if we have a polynomial f(X) = anX
n + an−1X

n−1 + ...+ a1X + a0 ∈ Fp2 [X] then

1

2
[f + π(f)] = Re(an)Xn + Re(an−1)X

n−1 + ...+ Re(a1)X + Re(a0) ∈ Fp[X],

−β
2

[f − π(f)] = Im(an)X
n + Im(an−1)X

n−1 + ...+ Im(a1)X + Im(a0) ∈ Fp[X],

where, for a+ bβ ∈ Fp2 , Re(a+ bβ) = a and Im(a+ bβ) = b, in analogy with the notation used for
complex numbers. As a result, we can obtain g1 and g2 directly from f = ΦN,p by computing

g1 = XDN,1 + ...+ Re(a0), and g2 = Im(aDN,1−1)X
DN,1−1 + ...+ Im(a0).

This avoids having to compute any Fp2 -multiplications to calculate the related polynomials g1, g2.

Algorithm 7.4 NeighbourInFp: Detect whether j ∈ Fp2 is N -isogenous to a j′ ∈ Fp

Input: Positive integer N ≥ 2, j-invariant j, and prime p.
Output: A boolean indicating if j-invariant j has an N -isogenous neighbour j′ ∈ Fp.

1: aDN,1
, ..., a0 ← EvalModPolyj(N, j, p)

2: g1 ← XDN,1 + ...+ Re(a0)
3: g2 ← Im(aDN,1−1)X

DN,1−1 + ...+ Im(a0)
4: return InvFreeGCD(g1, g2)

Remark 7.4.3. This author would like to thank the examiners for pointing out the algorithm by
Stehlé and Zimmerman [295, Figure 7] for computing the GCD of two n-bit integers in quasi-linear
time. More precisely, the maximum of the number of bit operations performed by this algorithm is
≈ 19

4 M(n) log(n), where M(n) is the asymptotic time required to multiply two n-bit integers [295,
Theorem 12]. To improve the performance of NeighbourInFp, it would be interesting to adapt
Stehlé and Zimmerman’s algorithm to compute polynomial GCDs rather than InvFreeGCD.

126

7.4.2 Cost of inspecting the N-isogeny graph

In this section, we determine the cost of inspecting the N -isogeny graph using NeighbourInFp,
denoted by costN .

For our application in SuperSolver, at each step the algorithm NeighbourInFp is run for each Ni
in a list N = {N1, . . . , Nk}. As remarked in Section 7.4.1, for a fixed j, the powers j2, . . . , jDNk

are computed once-and-for-all, and recycled among the Ni < Nk. Therefore, we disregard this cost
when determining the cost for each N .

As such, constructing g1, g2 ∈ Fp[X] following Lines 1 to 3 in Algorithm 7.4 requires at most
2mons(N) multiplications in Fp, where mons(N) is the number of monomials of the form XaY b

for a, b ∈ Z≥0 in ΦN,p(X,Y) such that b ̸= 0. Here we assume that multiplying a Fp2 element
with a Fp element is equivalent to 2 Fp-multiplications. By Proposition 7.3.4, as g1, g2 ∈ Fp[X],
we compute InvFreeGCD (g1, g2) with at most (2D2

N,1 + 3DN,1 − 5) Fp-multiplications. Therefore,
for a fixed N , the number of Fp-multiplications needed to inspect X1(Fp, N) with NeighbourInFp is

costN := #Fp multiplications needed to inspect N -isogenous neighbours

≤ 2D2
N,1 + 3DN,1 − 5 + 2mons(N),

and nodesN := DN,1, both of which depend only on N . This means that, for each N , the ratio
RN := costN

nodesN
can be computed once for all primes. In Table 7.3, we present the N with the lowest

such ratio, ordering them in increasing order from left to right. We present both the theoretical
upper bound for RN given above, and its value computed experimentally. We observe that our
bound is exact.

N 3 5 7 9 11 13 17 19 15 23

DN,1 4 6 8 12 12 14 18 20 24 24
mons(N) 13 31 57 133 133 183 307 381 553 553
Theoretical RN 16.3 24.5 32.6 48.8 48.8 56.8 72.8 80.9 96.9 96.9
Experimental RN 16.3 24.5 32.6 48.8 48.8 56.8 72.8 80.9 96.9 96.9

N 25 29 21 31 27 37 41 43 33 35

DN,1 30 30 32 32 36 38 42 44 48 48
mons(N) 871 871 993 993 1261 1407 1723 1893 2257 2257
Theoretical RN 120.9 120.9 128.9 128.9 144.9 152.9 168.9 177.0 192.9 192.9
Experimental RN 120.9 120.9 128.9 128.9 144.9 152.9 168.9 177.0 192.9 192.9

Table 7.3: The cost of inspecting N -isogenous neighbours for N ordered by increasing cost from left to
right. We give both the theoretical upper bound for the ratio RN , and the Fp-multiplications per node
computed experimentally, showing that they match.

Remark 7.4.4. The ratio RN depends only on DN,1. Therefore, if N,M ∈ N have DN,1 = DM,1,
their ratio will be the same, namely RN = RM .

The important takeaway from Table 7.3 is that the number of Fp-multiplications incurred by

127

our algorithm does not grow with p. This count is fixed and depends only on N . Looking back
at the root solving algorithms in Section 7.1.1, we see a stark difference in expected performance.
Those algorithms have many constants hidden by the big-O, have a leading N3 term (compared to
our N2 term), and, importantly, the number of field operations they incur grows as the field grows
due to their implicit dependency on log(p). Moreover, the complexities cited are for probabilistic
root finding algorithms. Their deterministic variants have even worse complexities [289, §20.6].

Remark 7.4.5. An alternative method for inspecting X1(Fp, N), pointed out to this author by
Travis Morrison, is to compute gcd(ΦN (j, Y), Y p − Y) as follows. Compute the image of Y p in
Fp2 [Y]/(ΦN (j, Y)), say f(Y), via a square-and-multiply algorithm. Then

gcd(ΦN (j, Y), Y p − Y) = gcd(ΦN (j, Y), f(Y)− Y),

which costs O(log p) multiplications in Fp, assuming the degree of ΦN (j, Y) is O(1). Though this
is more efficient than computing roots of the modular polynomial for large N , it is still dependent
on p. As such, our NeighbourInFp is more efficient, with its advantage growing as p grows. A more
in-depth analysis at the concrete improvement of NeighbourInFp over this alternative method is
left as future work.

7.4.3 Choosing the Ni to minimise the cost of a step

We consider the cost of each step in SuperSolver, which we denote by costN , running detection on
a list N = {N1, . . . , Nk} with Algorithm 7.4. Let costpowers be the cost of computing the powers
j2, . . . , jDNk of j-invariant j. If N = {}, then costpowers = 0. Otherwise, costpowers ≤ DNk,1 − 1.
The cost costN is given by

(7.2) costN = coststep + costpowers +
∑
N∈N

costN .

We seek to find a list that minimises the ratio RN = costN
nodesN

, where nodesN is the total number of
nodes revealed using set N at each step.

Recall from Table 7.3 that the N ’s that give the cheapest cost per node inspected are (from
left to right)

[3, 5, 7, 9, 11, 13, 17, 19, 15, . . .].(7.3)

We use Nb to denote each list of Ni, where the bit representation of b specifies the set of N ’s
from Equation (7.3); the least significant bit of b determines if 3 is included, the second least
significant bit of b determines if 5 is included, and so on. For example, N0 = {}, N2 = {5}, and
N7 = {3, 5, 7}.

Each step will always include revealing 2 neighbours in X1(Fp, 2). Indeed, Algorithm 7.2 can
compute both neighbouring j-invariants at no extra cost. Therefore, for a node j we have for each
step: costN ≥ coststep and nodesN ≥ 2. Here, equality holds only when we take the list to be N0,
which corresponds to the original Delfs–Galbraith algorithm.

To compute the exact nodes revealed at each step of our walk in the 2-isogeny graph, we assume

128

the following heuristic.

Heuristic 7.4.6. Let E0 → E1 → E2 → . . . be a walk in the 2-isogeny graph. Any elliptic curve
that is N -isogenous to En is not M -isogenous to Em for some m ≥ 0.

To justify this heuristic, note that we perform inspection for small values of N , and our walks
have length O(log(p)) (see Section 7.2.3), so this would imply an endomorphism of degree O(log(p)).
In Appendix B in the full version of work by Love and Boneh [222], the proportion of such curves
is O(log(p)3/2/p), and is therefore negligible as p→∞. Under this heuristic, we have

(7.4) nodesN = 2 +
∑
N∈N

DN,1.

Minimising the ratio RN is a non-trivial task. We first restrict the Nb to only contain N such
that RN < RN0

, otherwise it would be more advantageous to take another step by moving to
a neighbouring node in X1(Fp, 2). We emphasise that costN0

grows with p, whereas costN stays
fixed. This signifies that the condition on N becomes less restrictive as p increases. Suppose that,
imposing this condition we get Nb ⊆ {N1, ..., Nk}. We then exhaust all b < 2k, corresponding
to subsets of {N1, ..., Nk}, to determine the Nb that minimise this ratio. It is important to note
that, as this optimisation depends only on the prime p, the set Nb can be determined in the
precomputation.

7.4.4 A bound on the cost of the SuperSolver algorithm

We now discuss a heuristic upper bound for the concrete cost of finding a subfield curve using the
SuperSolver algorithm combined with our optimised algorithm for walking in X1(Fp, 2).

Let coststep be the cost of taking a step in X1(Fp, 2), as given by Lemma 7.2.3. The concrete
cost of running a step of SuperSolver with list N = {N1, . . . , Nk} is given by

costN = coststep + costpowers +
∑
N∈N

costN

≤

coststep, for N = {},

coststep +DNk,1 − 1 +
∑
N∈N

(
2D2

N,1 + 3DN,1 − 5 + 2mons(N)
)
, for N = {N1, . . . , Nk}.

Combining our estimate of costN above with Equation (7.4), given a prime p we can obtain a
heuristic upper bound on the ratio RN . We demonstrate this through an example.

Example 7.4.7. Consider the prime p = 2250 − 207 with log(p) = 250. In this case, we follow
Section 7.4.3 to calculate that N = {3, 5, 7, 9, 11, 13} is the optimal set, meaning that costpowers ≤
13. By Lemma 7.2.3, the cost coststep depends on the maximum positive integer e such that 2e | p−
1, which in this case is 4. Therefore, Exp(2e−1) = 15 Fp-multiplications, and Exp(c) ≤ 2 log(p)−2

Fp-multiplications (using the double-and-add method for exponentiation), and so coststep ≤ 90 +

4 log(p). For the set N = {3, 5, 7, 9, 11, 13}, we have that∑
N∈N

costN ≤ 65 + 147 + 261 + 2 · 585 + 795 = 2438.

129

Therefore, running SuperSolver with N = {3, 5, 7, 9, 11, 13}, we have an upper bound of

RN ≤
2541 + 4 log(p)

56
= 63.2

Fp-multiplications per node revealed, assuming the heuristic in Remark 7.4.2. Therefore, with 108

Fp-multiplications we expect to reveal at least 1582278 nodes. If we specialise instead to N0 = {},
we obtain the concrete cost of Solver. In this case, we find that Solver requires at most 545 Fp-
multiplications per node revealed, thus revealing at least 183486 nodes with 108 Fp-multiplications.
This is confirmed by our experiments in Table 7.6 of Section 7.6, which furthermore show that
these bounds are quite tight.

Due to the expansion properties of X1(Fp, 2), the expected proportion of subfield nodes in a ran-
dom walk in the graph is #Sp2/#Sp. Using this, we would expect the number of Fp-multiplications
needed to run SuperSolver until finding a subfield node using the set N to be

(7.5) RN ·
(
#Sp2
#Sp

)
.

From Theorem 4.2.4, we have #Sp2 = p
12 + O(1). Additionally, combining Proposition 4.2.6

and [216, pg. 97], we find that

#Sp ≥

1
2F (4p) if p ≡ 1 mod 4

F (p) if p ≡ 7 mod 8

2F (p) if p ≡ 3 mod 8

where F (D) := π
12eγ log logD

√
D, e is Euler’s number and γ is the Euler–Mascheroni constant.

Therefore,

(7.6)
#Sp2
#Sp

≤ eγ log log(p)

π

√
p ≈ (0.6 log log(p) + 0.2)

√
p.

As detailed above, for a given prime p, we can compute an upper bound for RN explicitly. There-
fore, we can combine Equation (7.6) with Equation (7.5) to obtain a (heuristic) upper bound for
the number of Fp-multiplications needed to run SuperSolver until finding a subfield node.

Remark 7.4.8. Interestingly, in Section 7.6 we observe that the average number of nodes visited
in the optimised Delfs–Galbraith walk through X1(Fp, 2) is more than the expected #Sp2/#Sp.
This is due to the clustering of X1(Fp, 2) in X1(Fp, 2), as we detail in Remark 7.6.1.

7.5 A worked example

We now use a worked example to illustrate how the Solver and SuperSolver algorithms solve the
supersingular isogeny problem, and to highlight the differences between them. Our SuperSolver
suite is written in SageMath/Python and a boolean variable supersolver specifies whether Solver
or SuperSolver is used. For a prime p, and two supersingular j-invariants j1 and j2 defined over

130

Fp2 = Fp(β), Solver runs by entering

Solver(p, j10, j11, j20, j21, false)

and SuperSolver runs by calling

Solver(p, j10, j11, j20, j21, true),

where j10 = Re(j1), j11 = Im(j1) and similarly for j20, j21.
We picked p = 220 − 3, the smallest of the primes from Table 7.4 of Section 7.6, and generated

two pseudo-random4 j-invariants in Fp2\Fp:

j1 = 129007β + 818380 and j2 = 97589β + 660383.

Preprocessing. The preprocessing phase of both programs starts by constructing the extension
field Fp2 = Fp(β), where β2 is the first non-square in the sequence −1, −2, 2, −3, 3, It
then computes a list of constants for the Tonelli-Shanks subroutine, as detailed in Section 7.2.1.
The preprocessing phase then computes a set of integers N ≥ 3 on which we perform the fast
inspection according to the optimisations in Section 7.4, fetches the associated files (originally
from Sutherland’s database [301]) containing ΦN (X,Y) ∈ Z[X,Y] and reduces all the coefficients to
store a set of new, more compact files containing elements of Fp that define each of the ΦN,p(X,Y) ∈
Fp[X,Y]. This is done for both Solver and SuperSolver, since both of these programs use the original
Delfs–Galbraith subfield path algorithm [132, Algorithm 1] after the searches for subfield nodes
is complete. It is important to note, especially in the cryptanalytic context, that all of these
preprocessing steps only depend on p and can therefore be done without knowledge of j1 and j2.

Solver. The optimised walk in X1(Fp, 2) proceeds exactly as described in Section 7.2, i.e., using
the depth first search through the binary trees rooted at j1 and j2, until both searches find the
subfield nodes j′1 ∈ Fp and j′2 ∈ Fp. In the case of our example, paths were found to j′1 = 760776

and j′2 = 35387, depicted in Figure 7.3 and Figure 7.4. They correspond to ϕ1 : E1 → E′
1 and

ϕ2 : E2 → E′
2, where j(E1) = j1, j(E′

1) = j′1, j(E2) = j2, and j(E′
2) = j′2.

Solver then computes a connecting path between the subfield nodes following Delfs and Gal-
braith [132, Algorithm 1]. This is depicted in Figure 7.5. Solver simply reverses the steps in ϕ2 to
obtain its dual, ϕ̂2, and outputs the full path as ϕ : E1 → E2 as ϕ = ϕ̂2 ◦ ϕ′ ◦ ϕ1.

SuperSolver. With p = 220 − 3, the preprocessing phase determined that SuperSolver is optimal
with N3 = {3, 5} (see also Table 7.4 in the next section). Before departing the starting node j1 =

129007β + 818380, SuperSolver performs the rapid inspection of its 3- and 5-isogenous neighbours
as described in Section 7.4. It then takes steps in X1(Fp, 2) as in Section 7.2, but at each new node
it performs the rapid inspection of the 3- and 5-isogenous neighbours. In our example, both walks
found a subfield node after 2 steps in X1(Fp, 2). The walk from j1 found a 3-isogenous neighbour
and the walk from j2 found a 5-isogenous neighbour. The final step that finds ϕ′ is implemented
in SuperSolver exactly as it was for Solver. The three isogenies ϕ1, ϕ2, and ϕ′, comprising the full

4We do this by taking long walks in X1(Fp, 3) away from a known subfield curve.

131

ϕ1 : j1 219247β + 863507 489342β + 132142

174188β + 794346 291380β + 146098 148602β + 24450

263095β + 184707 37438β + 90559 1027930β + 498080

612554β + 208821 994015β + 681197 206051β + 982009

649416β + 751358 203489β + 43055 393773β + 1028490

318158β + 140927 175225β + 937858 971263β + 725197

348684β + 935077 341898β + 405481 274229β + 367729

j′1 = 760776

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Figure 7.3: A walk through X1(Fp, 2) for p = 220 − 3 during Solver. The walk starts at j1 = 129007β +
818380 ∈ Fp2\Fp and finds the subfield node j′1 = 760776 ∈ Fp after 21 steps.

ϕ2 : j2 867493β + 220256 252807β + 1011175

657423β + 286117 440840β + 706619 953362β + 11601

734841β + 660440 919529β + 442520 219960β + 646080

638727β + 940073 219719β + 594710 619876β + 961666

407014β + 868179 535787β + 1046047 138865β + 8726

1016378β + 696447 289439β + 170877 665078β + 700037

895198β + 793471 562302β + 547814 68076β + 946405

j′2 = 35387

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Figure 7.4: A walk through X1(Fp, 2) for p = 220 − 3 during Solver. The walk starts at j2 = 97589β +
660383 ∈ Fp2\Fp and finds the subfield node j′2 = 35387 ∈ Fp after 21 steps.

132

ϕ′ : j′1 815910 848568 157399 451011 820763

j′2 286978 76159

31 17 31 29 31

31

17 37

Figure 7.5: A path connecting two subfield j-invariants by taking steps in X1(Fp, N) using SuperSolver
with N ∈ {17, 29, 31, 37}. The walk starts at j′1 = 760776 ∈ Fp and connects to j′2 = 35387 ∈ Fp after 8
steps.

ϕ1 : j1 219247β + 863507 489342β + 132142 j′1 = 35387

ϕ2 : j2 867493β + 220256 252807β + 1011175 j′2 = 292917

ϕ′ : j′1 658300 343840 560315

j′2 439276

2 2 3

2 2 5

17 29 31

17

37

Figure 7.6: The three paths found comprising an isogeny from E1 to E2 as found by SuperSolver.

isogeny ϕ = ϕ̂2 ◦ ϕ′ ◦ ϕ1 are depicted in Figure 7.6.
To illustrate the core idea in this paper, we focus on the isogeny ϕ1 depicted at the top of Fig-

ure 7.6 and walk through the steps of the NeighbourInFp algorithm. Evaluating the third modular
polynomial at the intermediate j-invariants (Step 1 of Algorithm 7.4) yields

Φ3,p(X, 219247β + 863507) = X4 + (212814β + 479338)X3 + (408250β + 920025)X2

+ (811739β + 93038)X + 942336β + 847782;

Φ3,p(X, 489342β + 132142) = X4 + (872004β + 13960)X3 + (1031755β + 822066)X2

+ (969683β + 747785)X + 813010β + 255391.

Though the theory tells us that these two polynomials split over Fp2 [X], to the naked eye there is
no way to distinguish which (if any) of these polynomials has a root in Fp. In both cases, setting
g1 = 1/2 · (Φ3,p + π(Φ3,p)) (Step 2 of Algorithm 7.4) and g2 = −β/2 · (Φ3,p − π(Φ3,p)) (Step 3
of Algorithm 7.4) respectively yields

g1 = X4 + 479338X3 + 920025X2 + 93038X + 847782;

g2 = 425628X3 + 816500X2 + 574905X + 836099,

133

and

g1 = X4 + 13960X3 + 822066X2 + 747785X + 255391;

g2 = 695435X3 + 1014937X2 + 890793X + 577447.

In the first case, Step 4 of Algorithm 7.4 outputs gcd(g1, g2) = 1, meaning that Φ3,p(X, 219247β+

863507) has no subfield roots. In the second case, we see gcd(g1, g2) = X + 1013186, meaning
that −1013186 = 35387 is a subfield root. In our example, we note that the total number of steps
between j1 and j2 returned by SuperSolver is 10, which is much shorter than the 50 steps taken
by Solver. Since the middle subfield path finding algorithm is the same in both routines, there is
no guarantee that the total path will always be smaller for SuperSolver. It is worth pointing out,
however, that the two outer paths from j-invariants in Fp2\Fp to j-invariants in the special subset
X1 (i.e., ϕ1 and ϕ2) returned by SuperSolver will never be longer than those returned by Solver.
Indeed, Solver can be viewed as a special case of SuperSolver where the list of N ’s is chosen to be
N0. Finally, we note that both Solver and SuperSolver always conclude by checking the correctness
of the full path from j1 to j2.

7.6 Implementation results

In this section we present some experimental results highlighting the efficacy of SuperSolver. The
experiments focus solely on the search for subfield nodes (i.e., the bottleneck step of Delfs–Galbraith
algorithm) and come in two flavours: many j-invariants over small primes, and one j-invariant over
a large, cryptographic prime.

Small primes and many walks. Table 7.4 and Table 7.5 report experiments that were run on the
largest primes of the 30 bitlengths from 20 to 49. We started at 5000 pseudo-random5 supersingular
j-invariants in Sp2 \ Sp for the primes of bitlengths 20-24, at 1000 j’s for the primes of bitlengths
25-29, at 500 j’s for the primes of bitlengths 30-34, at 100 j’s for the primes of bitlengths 35-39, at
50 j’s for the primes of bitlengths 40-44, and at 10 j’s for the primes of bitlengths 45-49. For every
j, we ran both Solver and SuperSolver (with the five sets of N ’s that were predicted to perform
best during preprocessing) until all walks hit a subfield j-invariant. Throughout, we will denote
these fast sets of N ’s by Nb, as in Section 7.4. In all cases we counted the exact number of Fp-
multiplications, squarings and additions required to find the subfield node. Following our metric
in Section 7.1, Table 7.5 reports the average number of Fp-multiplications by counting squarings
as multiplications, and highlights in bold which of the five predicted sets of N ’s performed best
on average.

Table 7.4 reports the average number of nodes visited in each of the walks, along with the ratio⌈
#Sp2/#Sp

⌉
, the expected number of random elements in Sp2 that would need to be sampled

to find a subfield element in Sp, and R, the ratio of the number of nodes we visited on average
using Solver against the number of elements we would expect to draw at random from Sp2 before
finding one in Sp (see Remark 7.6.1). Here, the primes are small enough that Sp can be computed

5Just as in Section 7.5, we used long walks in X1(Fp, 3) away from a known starting curve to achieve uniformity
in Sp2 .

134

precisely (i.e., the class group can be computed). For each prime, Table 7.4 highlights in bold
the column that matches up with the least multiplications reported in Table 7.5. Note that, for
SuperSolver, the number of nodes visited is the number of nodes that are actually walked onto in
X1(Fp, 2), not the number of nodes inspected using our fast subfield detection algorithm. Thus,
in general, the lowest average number of nodes visited does not correspond to the lowest average
number of multiplications. Indeed, the walks with fewer N ’s spend less compute inspecting N -
isogenous neighbours and therefore move onto new nodes faster, but do not cover as much of the
supersingular set during the fast inspection.

Solver SuperSolver

Prime p p mod 8

⌈
#S

p2

#Sp

⌉
R

Fp-mults. Fastest Nj ’s N = {} N(i) N(ii) N(iii) N(iv) N(v)
per step [N(i) . . . ,N(v)]

220 − 3 5 530 1.5 54 [N3,N1,N7,N5,N2] 812 127 257 76 107 193
221 − 9 7 156 2.9 53 [N3,N1,N7,N5,N2] 459 86 218 53 87 111
222 − 3 5 584 1.5 60 [N3,N7,N1,N5,N6] 885 170 108 288 146 145
223 − 15 1 583 1.4 71 [N3,N7,N5,N6,N1] 838 172 106 169 121 430
224 − 3 5 1277 1.5 64 [N3,N7,N5,N1,N6] 1897 318 209 311 618 273
225 − 39 1 1231 1.5 71 [N3,N7,N5,N1,N6] 1873 360 223 359 933 259
226 − 5 3 732 1.9 62 [N3,N7,N1,N5,N6] 1362 352 194 691 271 233
227 − 39 1 2348 1.5 73 [N3,N7,N5,N6,N1] 3455 917 438 579 497 1766
228 − 57 7 2965 3.3 64 [N3,N7,N1,N5,N6] 9748 1788 1022 3065 1314 1306
229 − 3 5 2953 1.5 74 [N3,N7,N5,N6,N1] 4384 1053 526 712 603 2161

230 − 35 5 3965 1.4 75 [N3,N7,N5,N6,N1] 5555 1443 749 961 849 2825
231 − 1 7 9009 3.0 75 [N3,N7,N5,N6,N1] 27103 4501 2602 3755 3136 8794
232 − 5 3 5142 2.0 75 [N3,N7,N5,N6,N1] 10149 2520 1445 2108 1702 5335
233 − 9 7 6638 3.1 77 [N3,N7,N5,N6,N1] 20387 3832 2342 3756 2676 10562
234 − 41 7 10526 3.1 78 [N3,N7,N5,N6,N1] 32640 6443 3790 6094 4531 16320
235 − 31 1 117571 1.3 99 [N7,N3,N5,N6,N23] 150101 14893 27873 23076 20921 9850
236 − 5 3 29040 2.2 83 [N3,N7,N5,N6,N23] 63384 15929 9127 11974 10807 5249
237 − 25 7 70328 3.1 84 [N3,N7,N5,N6,N23] 218775 26241 16098 29226 24153 10405
238 − 45 3 100268 2.2 86 [N3,N7,N5,N6,N23] 217145 43595 21343 27187 26982 14897
239 − 7 1 174817 1.3 96 [N7,N3,N5,N6,N23] 230235 28802 48488 36770 38318 19677

240 − 87 1 266662 1.5 95 [N7,N3,N5,N6,N23] 394908 49855 80764 66646 56901 28016
241 − 21 3 205227 2.2 92 [N7,N3,N5,N6,N23] 448887 52656 105639 69940 62212 27395
242 − 11 5 557046 1.3 99 [N7,N3,N5,N6,N23] 720206 93920 189498 147651 102116 64309
243 − 57 7 198777 3.5 95 [N7,N3,N5,N6,N23] 705224 69021 153095 95778 81922 44112
244 − 17 7 307870 2.6 98 [N7,N3,N5,N6,N23] 808057 131220 285136 145263 142750 72964
245 − 55 1 3120225 0.7 108 [N7,N3,N5,N6,N23] 2298828 301730 410169 579449 404520 226542
246 − 21 3 2759728 3.3 102 [N7,N3,N5,N6,N23] 9075335 516826 788898 957832 730020 382101
247 − 115 5 4234340 1.2 108 [N7,N3,N5,N6,N23] 5182631 650377 866413 650377 801837 781907
248 − 59 5 2706129 2.5 111 [N7,N3,N5,N6,N23] 6739857 546014 899553 756358 651990 491312
249 − 81 7 1239417 2.9 107 [N7,N3,N5,N6,N23] 3582205 288124 660449 326050 319641 252270

Table 7.4: The average number of nodes visited in the search for subfield j-invariants with Solver and
SuperSolver using the five fastest sets N(i) . . . ,N(v). See further explanation in text.

The key trend to highlight is that, relatively speaking, SuperSolver gains more advantage over
Solver as the primes get larger. This is not as evident for the small primes in Tables 7.4 and 7.5
as it is for the larger primes below.

Remark 7.6.1 (X1(Fp, 2) clusters in X1(Fp, 2)). An interesting trend to highlight in Table 7.4 is
that the average number of nodes visited in the optimised Delfs–Galbraith walk through X1(Fp, 2)
is significantly more than the expected number of elements one would need to select randomly

135

Solver SuperSolver

Prime p
⌈

#S
p2

#Sp

⌉
Fp-mults.
per step

Fastest Nj ’s
[N(i) . . . ,N(v)]

N = {} N(i) N(ii) N(iii) N(iv) N(v)

220 − 3 530 54 [N3,N1,N7,N5,N2] 44848 20601 22585 22235 23459 24951
221 − 9 156 53 [N3,N1,N7,N5,N2] 24187 13648 18578 15453 18770 14064
222 − 3 584 60 [N3,N7,N1,N5,N6] 52385 28062 31962 26410 32555 38348
223 − 15 583 71 [N3,N7,N5,N6,N1] 59691 30508 32883 39703 33370 44556
224 − 3 1277 64 [N3,N7,N5,N1,N6] 112878 53900 62725 70482 59206 73117
225 − 39 1231 71 [N3,N7,N5,N1,N6] 128703 63021 68210 83333 94434 70878
226 − 5 732 62 [N3,N7,N1,N5,N6] 85437 59484 58286 65813 61261 62216
227 − 39 2348 73 [N3,N7,N5,N6,N1] 251304 164036 135672 136633 137780 185819
228 − 57 2965 64 [N3,N7,N1,N5,N6] 631157 305345 308003 298049 299314 351102
229 − 3 2953 74 [N3,N7,N5,N6,N1] 326888 199985 171489 173335 177986 235902

230 − 35 3965 75 [N3,N7,N5,N6,N1] 412457 260188 232753 228089 236360 301541
231 − 1 9009 75 [N3,N7,N5,N6,N1] 1998840 809040 807306 889210 871068 934319
232 − 5 5142 75 [N3,N7,N5,N6,N1] 758637 455571 449889 501335 474549 572203
233 − 9 6638 77 [N3,N7,N5,N6,N1] 1564701 700390 733705 900515 751310 1153911
234 − 41 10526 78 [N3,N7,N5,N6,N1] 2537688 1184024 1191084 1467113 1276654 1799292
235 − 31 117571 99 [N7,N3,N5,N6,N23] 15272705 5037679 5790782 6109529 6396752 6213090
236 − 5 29040 83 [N3,N7,N5,N6,N23] 5244914 3006618 2913909 2942626 3099020 3211580
237 − 25 70328 84 [N3,N7,N5,N6,N23] 18322417 4979176 5155517 7211517 6950196 6375918
238 − 45 100268 86 [N3,N7,N5,N6,N23] 18402937 8315681 6856578 6735588 7791309 9143526
239 − 7 174817 96 [N7,N3,N5,N6,N23] 22505327 9627241 9879376 9587856 11562406 12332858

240 − 87 266662 95 [N7,N3,N5,N6,N23] 38602102 16664021 16455546 17377853 17169885 17559520
241 − 21 205227 92 [N7,N3,N5,N6,N23] 41185437 17284297 20890068 17817383 18399209 17006068
242 − 11 557046 99 [N7,N3,N5,N6,N23] 70760036 31439715 38704883 38573868 3086457440337712
243 − 57 198777 95 [N7,N3,N5,N6,N23] 66820000 22863425 30733754 24686759 24474388 27514948
244 − 17 307870 98 [N7,N3,N5,N6,N23] 79795521 43991657 58381667 38022655 43217829 45803624
245 − 55 3120225 108 [N7,N3,N5,N6,N23] 247697962103871110 87674099 156886333 126109617 144250917
246 − 21 2759728 102 [N7,N3,N5,N6,N23] 923415913174816651 163893709198006728 205399202 220786555
247 − 115 4234340 108 [N7,N3,N5,N6,N23] 550653552222915969 183895536 175113230248769348 272706341
248 − 59 2706129 111 [N7,N3,N5,N6,N23] 729589278188237971192728454 205161765 251091015 310387211
249 − 81 1239417 107 [N7,N3,N5,N6,N23] 38598205799186957 141171527 88278361 99648273 160633132

Table 7.5: The average number of Fp-multiplications used to search for subfield j-invariants with Solver
and SuperSolver using the five fastest sets N(i) . . . ,N(v). See further explanation in text.

from Sp2 in order to find an element of Sp. The reason for this is that components of X1(Fp, 2)
cluster together in X1(Fp, 2). Thus, with respect to finding subfield nodes, walks in X1(Fp, 2)
are significantly different from selecting nodes at random from Sp2 . The types of clusterings in
X1(Fp, 2) depend on the value of p mod 8 [132, Theorem 2.7], which is why this value is given
alongside p in each row. Write R for the ratio of the number of nodes we visited on average
using Solver (i.e., the N = {} column) against the number of elements we would expect to draw
at random from Sp2 before finding one in Sp (i.e., #Sp2/#Sp). Table 7.4 shows that (i) when
p ≡ 1 mod 4, we typically see 1 ≤ R ≤ 2; (ii) when p ≡ 3 mod 8, we typically see 2 ≤ R ≤ 3; and
(iii) when p ≡ 7 mod 8, we often see R > 3. Indeed, when p ≡ 1 mod 4, the graph X1(Fp, 2) is less
connected, meaning that short paths are more likely to go through nodes in Sp. In contrast, when
p ≡ 7 mod 8, the graph can be highly connected. This is exhibited in [5, §3.5.3], which presents
the number of connected components of X1(Fp, 2), depending on the value of p mod 8. For more
experimental data illustrating this phenomenon, see [5, §4.3]. In practice, we do not see the N > 1

as enough of a reason to incur the significant overhead of walking in X1(Fp, N) for N > 2 instead.

136

In any case, the method of fast subfield root detection proposed in this paper will work regardless
of the N -isogenies that are used to take steps in a given walk. In fact, if walking in X1(Fp, N) for
N > 2 results in better concrete performance than for N = 2, the greater cost of taking a step in
X1(Fp, N) is likely to increase the size of the set of “fast N ’s” and the relative efficacy of invoking
subfield root detection.

Large primes and optimal node coverage. Table 7.6 illustrates the increased efficacy of
SuperSolver over Solver as the supersingular isogeny graphs get larger. Recall that we reported
some of the results from this table up front in the introduction, namely from the experiments using
primes from the isogeny literature. We chose the largest prime below 2k for k ∈ {50, 100, . . . 800},
and started from a pseudorandom j-invariant in Sp2 \ Sp as usual. Since these instances are too
large to actually run the full subfield search until it terminates, in each case we ran both Solver and
SuperSolver (for the three sets of N ’s that were predicted to perform best during preprocessing)
until the number of Fp-multiplications used exceeded 108, and then immediately stopped. The
numbers reported in bold in Table 7.6 are the total number of nodes covered (i.e., both walked
onto and inspected) during these walks. For the smallest prime p = 250 − 27, SuperSolver covers
around 3 times the number of nodes that Solver does; for the largest prime p = 2800 − 105,
SuperSolver covers around 17 times the number of nodes. Though primes beyond this size are
unlikely to be of cryptographic interest, it is worth pointing out that this trend continues: the
larger p grows, the more profitable it becomes to keep adding N ’s in the fast subfield inspection
algorithm.

Storing and accessing the reduced modular polynomials. The unreduced modular polyno-
mials ΦN (X,Y) ∈ Z[X,Y] require a significant amount of storage, but recall that the preprocessing
phase immediately reduces all the coefficients into Fp to produce ΦN,p(X,Y) ∈ Fp[X,Y]. This
can be done once-and-for-all for a specific prime, and this makes the storage and access of the
ΦN,p(X,Y) a non-issue. Storing ΦN,p(X,Y) requires at most (D2

N,1/2) · log(p) bits. For example,
the largest ΦN,p(X,Y) for the 250-bit prime above is Φ13,p(X,Y), which requires the storage of at
most D2

13,1/2 = 142/2 = 98 elements of Fp, around 3KB. The largest ΦN,p(X,Y) for the 800-bit
prime above requires the storage of at most D2

19,1/2 = 202/2 = 200 elements of Fp, around 20KB.
Any of these would comfortably fit into the L1 cache on a modern CPU.

Concrete security of the supersingular isogeny problem. Our SuperSolver suite makes it
straightforward to go beyond the heuristic estimates in Section 7.4.4 and obtain precise estimates
on the concrete classical security offered by the general supersingular isogeny problem in Sp2 , for
any prime p. Combining a small experiment (like those reported in Table 7.6) with the expected
number of nodes one must cover before reaching a subfield node allows us to obtain accurate counts
on the expected number of Fp-multiplications, squarings and additions that must be carried out
during a full cryptanalytic attack. It is then a matter of costing these Fp operations with respect
to the appropriate metric, whether that be bit operations, cycle counts, gate counts, or circuit
depth.

Take, for example, the SQIsign 256-bit prime

p = 73743043621499797449074820543863456997944695372324032511999999999999999999999

137

Solver SuperSolver

Prime p Nodes Fp-mults. Fastest Sets N Nodes Fp-mults. Improv.
inspected per node inspected per node Factor

{3,5,7} 2,859,221 35.0
250 − 27 883,007 113 {3,5} 2,736,601 36.5 2.8 - 3.2x

{3,7} 2,533,945 39.4

{3,5,7} 2,165,681 46.0
2100 − 15 443,951 223 {3,5,7,11} 2,121,313 47.1 4.5 - 4.9x

{3,5,7,9} 1,988,731 47.1

{3,5,7,9,11} 1,847,413 51.8
2150 − 3 317,215 315 {3,5,7,11} 1,895,201 52.9 5.6 - 6.0x

{3,5,7,9} 1,776,751 52.9

{3,5,7,9,11} 1,700,749 56.2
2200 − 75 241,987 415 {3,5,7,9,11,13} 1,715,449 56.3 7.0 - 7.1x

{3,5,7,11,13} 1,716,767 58.3

{3,5,7,9,11,13} 1,607,145 60.1
2250 − 207 191,115 521 {3,5,7,9,11} 1,561,645 61.1 8.2 - 8.4x

{3,5,7,11,13} 1,586,495 63.0

{3,5,7,9,11,13} 1,531,993 63.0
2300 − 153 164,273 610 {3,5,7,9,11} 1,468,279 65.0 8.0 - 8.4x

{3,5,7,9,11,13,17} 1,489,991 65.3

{3,5,7,9,11,13} 1,452,529 66.5
2350 − 113 141,097 709 {3,5,7,9,11,13,17} 1,432,345 68.0 9.7 - 10.3x

{3,5,7,9,11} 1,372,351 70.0

{3,5,7,9,11,13} 1,380,849 70.0
2400 − 593 123,649 809 {3,5,7,9,11,13,17} 1,378,991 70.6 10.8 - 11.2x

{3,5,7,9,11,13,19} 1,339,805 72.8

{3,5,7,11,13,9,17} 1,330,891 73.2
2450 − 501 110,407 906 {3,5,7,11,13,9} 1,317,849 73.3 11.9 - 12.1x

{3,5,7,11,13,9,17,19} 1,309,703 74.8

{3,5,7,9,11,13,17} 1,274,503 76.4
2500 − 863 97,209 1032 {3,5,7,9,11,13,17,19} 1,266,275 77.3 12.8 - 13.1x

{3,5,7,9,11,13} 1,245,721 77.5

{3,5,7,9,11,13,17} 1,239,501 78.6
2550 − 5 90,031 1111 {3,5,7,9,11,13,17,19} 1,238,921 79.0 13.3 - 13.8x

{3,5,7,9,11,13} 1,201,873 80.3

{3,5,7,9,11,13,17,19} 1,200,945 81.5
2600 − 95 81,253 1230 {3,5,7,9,11,13,17} 1,191,549 81.7 14.4 - 14.8x

{3,5,7,9,11,13,19} 1,166,297 83.6

{3,5,7,9,11,13,17,19} 1,176,411 83.3
2650 − 611 76,207 1314 {3,5,7,9,11,13,17} 1,161,061 83.9 14.9 - 15.4x

{3,5,7,9,11,13,19} 1,137,873 85.7

{3,5,7,9,11,13,17,19} 1,148,963 85.2
2700 − 1113 71,037 1408 {3,5,7,9,11,13,17} 1,127,317 86.4 15.8 - 16.2x

{3,5,7,9,11,13,17,19,23} 1,123,125 87.5

{3,5,7,9,11,13,17,19} 1,121,045 87.4
2750 − 161 66,237 1510 {3,5,7,9,11,13,17} 1,093,351 89.0 16.5 - 16.9x

{3,5,7,9,11,13,17,19,23} 1,101,767 89.3

{3,5,7,9,11,13,17,19} 1,095,195 89.4
2800 − 105 62,163 1610 {3,5,7,9,11,13,17,19,23} 1,081,825 90.9 16.2 - 17.6x

{3,5,7,9,11,13,17,19,15} 1,008,481 90.9

Table 7.6: The number of nodes inspected per 108 field multiplications for the largest primes of various
bitlengths. The Solver column corresponds to optimised Delfs–Galbraith walks in X1(Fp, 2) – see Sec-
tion 7.2. The SuperSolver columns correspond to enabling our fast subfield root detection algorithm with
the three fastest sets of N ’s (left to right) – see Section 7.4. Numbers in round brackets are the approx-
imate number of Fp-multiplications per node inspected, as computed during the precomputation phase
that determines which sets of N ’s will perform fastest. The improvement factor column corresponds to
the number of nodes inspected with SuperSolver divided by the number of nodes inspected by Solver.

138

given by De Feo, Kohel, Leroux, Petit, and Wesolowski [125] to illustrate how our software can
be used to obtain precise security estimates. The precomputation phase of SuperSolver, which
takes a few seconds on input of p, reveals that taking an optimised step in X1(Fp, 2) costs 403

multiplications in Fp. Based on this cost, the precomputation further determines that the fastest
set of N ’s to proceed with are

N ∈ {3, 5, 7, 9, 11}.

On average, the combination of this set of N ’s and Algorithm 7.4 reduces the cost of the subfield
search from 403 multiplications in Fp per node to 55.7 multiplications in Fp per node (see Table 7.1).
Thus, on average, solving the supersingular isogeny problem costs

55.7 ·
(
#Sp2
#Sp

)
Fp-multiplications. Since p ≡ 7 mod 12, we have #Sp2 = ⌊p/12⌋ + 1 (see Theorem 4.2.4), and
since p ≡ 7 mod 8, #Sp is exactly the class number of the imaginary quadratic field Q(

√
−p)

(see Proposition 4.2.6). We suppose this class number is h, i.e., #Sp = h. Writing h = 2k,
where k is correct to 3 decimal places, we would obtain that the average cost of breaking this
instance of SQIsign is 2257.564−k multiplications in Fp. Note that, for large, cryptographic sized
primes p, computing class numbers is very computationally expensive. Indeed, a recent class group
computation for a 512-bit prime terminated in approximately 52 core years. Alternatively, we can
use our theoretical upper bound on #Sp2/#Sp from Equation (7.6).

In Table 7.7 we give average counts for the cost of breaking the supersingular isogeny problem
using SuperSolver for a number of primes underlying either B-SIDH6 or SQIsign.

Prime p p mod 8
Average number of
Fp-mults. per node

#Sp2 #Sp Average cost of SuperSolver

B-SIDH-p247 [99] 7 55.6 2242.559 2k1 2248.356−k1

TwinSmooth-p250 [105] 1 59.1 2246.220 2k2−1 2252.105−k2

SQISign-p256 [125] 7 55.7 2251.764 2k3 2257.564−k3

TwinSmooth-p384 [105] 1 63.1 2379.735 2k4−1 2385.715−k4

TwinSmooth-p512 [105] 5 69.1 2507.896 2k5−1 2514.007−k5

Table 7.7: The average number of Fp-multiplications required to solve the supersingular isogeny problem
using SuperSolver. When p ≡ 1 mod 4, we assume that N = 2k is the class number of Q(

√
−4p), where k

correct to 3 decimal places. Otherwise, it is the class number of Q(
√
−p). As N varies for each prime, we

will index N and k by the row in the table, i.e., Ni = 2ki will be the class number of the i-th prime in the
table. The number of Fp-multiplications per node using SuperSolver is taken from Table 7.1.

Remark 7.6.2. Converting the number of Fp-multiplications into a clock cycle count depends
heavily on the prime p. Therefore, to get a rough idea on how the Fp-multiplication counts
for SuperSolver translate into clock cycles, we turn to Scott’s optimised C implementation of Fp
arithmetic for the pseudo-Mersenne prime 2255 − 19 (see [282] for more details). Running the
same experiment as those reported in Table 7.6 on this prime, we find that 53.0 Fp-mutiplications
are needed per node revealed (using the optimal set computed to be {3, 5, 7, 9, 11, 13}). In Table

6B-SIDH is now broken.

139

2 from [282], Scott reports that at most 62 Skylake x86-64 clock cycles are needed for an Fp-
multiplication, thus giving us 3286 clock cycles per node revealed.

140

Chapter 8

The isogeny problem in dimension 2

In this chapter, we study the general supersingular isogeny problem in dimension 2, and determine
the concrete complexity of the Costello–Smith attack. Using explicit parametrisations of the moduli
space of genus-2 curves whose Jacobians are split by an (N,N)-isogeny, we give an improved
attack with lower concrete complexity. For cryptographic-sized primes p ≈ 2128, we achieve an
improvement by around a factor of 25. The chapter is based on the paper

An algorithm for efficient detection of (N,N)-splittings and its application to the isogeny
problem in dimension 2

which is joint work with Craig Costello and Sam Frengley, published at PKC 2024 [88], where
it was given the Best Paper Award. The chapter is for all intents and purposes the same as the
published, barring minor editorial changes and the removal of repeated preliminaries.

Introduction

Let C and C ′ be genus-2 curves with superspecial Jacobians. The general dimension-2 superspecial
isogeny problem asks us to find an isogeny

ϕ : JC → JC′ ,

of p.p. abelian surfaces, where JC and JC′ are the Jacobians of C and C ′ respectively.
We say that the Jacobian JC of genus-2 curve C is split (over k) if there exists a separable

(polarised) k-isogeny of p.p. abelian surfaces JC → E1 × E2 where E1/k and E2/k are elliptic
curves.

The best known algorithm for solving the superspecial isogeny problem is due to Costello and
Smith [107] and consists of two stages. We recall its description from Section 4.3.2. The first
stage computes pseudorandom walks away from the two input Jacobians to find paths to products
of two supersingular elliptic curves, i.e., φ : JC → E1 × E2 and φ′ : JC′ → E′

1 × E′
2. Assuming

the pseudorandom walks quickly converge to the uniform distribution, the first stage runs in Õ(p)

classical bit operations, since the proportion of superspecial abelian surfaces that are isomorphic to
a product of elliptic curves is O(1/p). The second stage calls the Õ(p1/2) Delfs–Galbraith algorithm
(see Section 4.3.1) to find paths between E1 and E′

1 and between E2 and E′
2. These are then glued

together to obtain the path π : E1×E2 → E′
1×E′

2 connecting φ and φ′ in order to output the full
solution ϕ := φ̂′ ◦ π ◦ φ. It follows that the entire algorithm runs in Õ(p) classical bit operations
on average, with the cost dominated by the first step: finding paths to products of elliptic curves.

141

Looking at Example 6.3.3, this algorithm follows the general strategy given at the start of Part II,
where the special subset X2 ⊂ S2(Fp) in this case is E2(Fp).

Isogeny-based cryptography in dimension 2. The product-finding algorithm that we accel-
erate in this work solves the general superspecial isogeny problem, which underlies the security of
various isogeny-based protocols in dimension 2. An example of such a scheme is the dimension-2
analogue of the CGL hash function [76], which was proposed by Takashima [303] and later extended
by Castryck, Decru, and Smith [72].

The 2022 breaks of SIDH and SIKE [67, 227, 271] revealed that understanding higher dimen-
sional isogenies is essential to navigate the isogeny graphs in dimension 1. More recently there has
been a line of works leveraging the techniques used in the attacks to propose new cryptosystems
that exploit isogeny computations in higher dimensions, for example SQIsignHD [116], FESTA [19],
and SCALLOP-HD [79]. Although the hard problems underlying these schemes are not directly
impacted by the algorithm that is optimised in this chapter, we believe the trend towards instanti-
ating schemes in higher dimensions will only make the dimension-2 supersingular isogeny problem
more relevant to practitioners as the field of isogeny-based cryptography continues to mature.

Based on the present knowledge of attacks in dimension 2, we believe it is reasonable to speculate
that the complexity of the product-finding algorithm may eventually be used as an upper-bound
on the classical hardness of attacking many schemes that are currently conceivable, even when the
underlying instances of the isogeny problem are special cases of its general formulation (provided
no superior algorithm for the special problem is found, of course). For example, consider the
dimension-2 analogue of the Σ-protocol that proves knowledge of an isogeny degree of a specified
length (see [119] for the latest on this protocol). In dimension 1, the best known classical attack on
this protocol is the van Oorschot–Wiener (vOW) meet-in-the-middle algorithm [253]. In dimension
2, however, the Õ(p) product-finding algorithm will solve the general problem at least as fast as
the van Oorschot–Wiener meet-in-the-middle algorithm [253], and is likely to become the preferred
algorithm1 for large enough p.

Contributions

We begin with an implementation of the algorithm described above for finding paths to products of
elliptic curves. This includes a streamlined version of the Takashima–Yoshida algorithm [304, §5.5]
for computing chains of Richelot isogenies. With this optimised algorithm, we provide a toolbox
for exploring the (2, 2)-isogeny graph. The expansion properties of the (2, 2)-isogeny graph are not
well understood, and our implementation is well suited to exploring this. For example, one could
hope to provide evidence towards Conjecture 4.2.9. Understanding the expansion properties of
this graph is crucial to gaining a deeper insight into the hardness of the general isogeny problem
in dimension 2.

This lays the foundation for the main contribution of this work: a new algorithm that speeds
up the search for paths to products of elliptic curves. At the heart of our algorithm is the work

1For a fixed memory bound w and single processor, taking n = p3/4 [159, §4.1] in [253, Equation 4] gives an
asymptotic runtime of O(p9/8) on a single core. Moreover, parallel processors running vOW must read from, and
write to, the huge central storage database (which hampers parallel performance in practice), while product-finding
is memory-free and parallelises perfectly.

142

Walks in X2(Fp, 2) Walks in X2(Fp, 2)
without additional searching w. split searching in X2(Fp, N)

[107] (optimised in Section 8.2) This work

p Fp-mults. set Fp-mults. improv.
(bits) per node N ∈ {. . . } per node factor

50 579 {2, 3} 35 16.5x
100 1176 {2, 3} 48 24.5x
150 1575 {3, 4} 54 29.2x
...

...
...

...
...

950 9772 {4, 6} 69 141.6x
1000 11346 {4, 6} 71 159.8x

Table 8.1: An abbreviated version of Table 8.5. See Section 8.6 for further explanation.

of Kumar [206], who gives explicit parametrisations of the moduli space of genus-2 curves whose
Jacobians are split by an (N,N)-isogeny. When we step to a new node in the Richelot isogeny
graph, these parametrisations allow us to efficiently test whether any of the (N,N)-isogenous
neighbours are isomorphic to a product of supersingular elliptic curves without computing any
expensive (N,N)-isogenies. For example, over a field whose characteristic is a 100-bit prime, an
optimised Richelot isogeny (see Section 8.2) requires 1176 Fp-multiplications. This is the cost of
taking a single step in the Richelot isogeny graph, which reveals only one neighbour and is thus the
per-node cost of running the Costello–Smith attack. However, using the new algorithm we describe
in Section 8.4 with N = 3, we are able to test whether any of the (3, 3)-isogenous neighbours are
split with a total of 767 Fp-multiplications. Since there are 40 such neighbours, the per-node cost
of simultaneously searching these neighbours is less than 20 Fp-multiplications each. The upshot is
that when attacking an instance of the superspecial isogeny problem, we can sift through a larger
proportion of superspecial Jacobians per unit time, thus reaching an elliptic curve product with
fewer Fp-multiplications.

In Section 8.6 we report on a number of experiments conducted over both small primes (where
instances of the superspecial isogeny problem can be solved) and large primes of cryptographic size.
Applying our accelerated algorithm to find paths to elliptic products when p = 231 − 1, we solved
10 instances of the problem using an average of 233.0 multiplications in Fp for an average wall time
of 216.3 seconds. Our optimised version of the original algorithm due to Costello and Smith [107]
required an average of 236.8 multiplications in Fp for an average runtime of 220.5 seconds to solve
the same 10 instances. In Table 8.1 we give a snapshot of the improvements that were observed
in our implementation for a number of large primes of varying bitlength. We see that the relative
speed-up improves as the prime p grows in size (see Section 8.6 for more details).

For primes of at least 150 bits, we argue in Section 8.5.3 that (heuristically) Algorithm 8.4

143

requires an expected number of(
14 log(p) + 34490

5 · 664

)
p+O(log(p))

Fp-multiplications before encountering a product of elliptic curves. Under the same heuristics,
our optimised version of the algorithm in [107] would require a larger expected

(
12 log(p)+129

5

)
p+

O(log(p)) Fp-multiplications.
We note that our algorithm for detecting (N,N)-splittings may be of interest outside our target

application of the dimension-2 superspecial isogeny problem. For example, it answers a question
posed by Castryck and Decru for d ≤ 11 [67, §11.3]:

Let H/Fp2 be a genus 2 curve with superspecial Jacobian J , and d > 1 an integer. Is
there a (d, d)-isogeny Φ : J → A such that A is a product of elliptic curves?

Applications to cryptanalysis. In the security analysis of their hash function, Castryck, Decru,
and Smith [72] correctly argue that, since the steps taken by their hash function correspond entirely
to “good extensions” (see Section 8.2.2), the path returned by the Costello–Smith algorithm (which
does not only consist of good extensions) is not a valid preimage [72, Footnote 11]. However, more
recent work by Florit and Smith [155, §6.2 - 6.4] shows that collisions in the Castryck–Decru–Smith
(CDS) hash function can be constructed once a walk to an elliptic product is known. So long as we
assume our walks approximate the random distribution on X2(Fp, 2) (more on this in Remark 8.2.1),
then we consider it prudent to use the complexity of the product-finding algorithms to classify the
security of a given instance of the CDS hash function, even if preimage resistance is the governing
security property.

As will become apparent in Section 8.5, our acceleration of the Costello–Smith algorithm will
return a (2nN, 2nN)-isogeny (for some n ∈ N and positive integer N ≤ 11). However, for many
cryptographic protocols in isogeny-based cryptography, the secret isogeny will be of a specified
degree, usually a prime power ℓk. Though an algorithm that transforms a (2nN, 2nN)-isogeny to
a (ℓk, ℓk)-isogeny has yet to be developed, for example by generalising the KLPT algorithm (see
Section 5.1.1) to dimension 2, we find it prudent to conjecture such an algorithm exists, rather
than betting the security of primitives on the converse.

Availability of Software

All of the source code accompanying this chapter is written in MAGMA [49] and can be found at

https://github.com/mariascrs/SplitSearcher.

Related work

At a high level, our improvements to the dimension-2 superspecial isogeny attack can be viewed as
an analogue of those recently given by the SuperSolver algorithm presented in Chapter 7. Indeed,
as described in the introduction of Part II, both attacks use random walks to find special nodes in
the graph to reduce the (remainder of the) algorithm to a comparatively easier isogeny problem:

144

https://github.com/mariascrs/SplitSearcher

the special nodes in the Delfs–Galbraith algorithm are the isomorphism classes of elliptic curves
defined over Fp, while the special nodes in the Costello–Smith algorithm are the isomorphism
classes of products of elliptic curves. The key to the improvements in Chapter 7 was an efficient
method for determining whether modular polynomials have subfield roots without computing any
such roots explicitly. This allows many nodes to be simultaneously searched over without being
visited by means of expensive isogeny computations. The key to the improvements in this chapter
stem from Kumar’s parametrisations of the moduli space of genus 2 curves whose Jacobians are
split by an (N,N)-isogeny [206]. In a similar vein to Chapter 7, we show that these can be used
to simultaneously search over many neighbours without visiting the corresponding nodes in the
isogeny walks.

It is worth noting that, relatively speaking, the improvements found in this work are significantly
larger than the improvements reported in Chapter 7 in the dimension-1 case. At a first glance
of Section 8.4, it seems our batch (N,N)-split searching requires a lot more computation than the
analogous batch N -isogenous subfield curve searching done in SuperSolver. However, in dimension 2
we are processing O(N3) neighbours simultaneously (see Equation (2.8)), while the subfield search
in dimension 1 is batch testing O(N) neighbours each time (see Equation (2.7)). For primes of
size 50 to 800 bits, Table 7.6 in Chapter 7 reports speed-ups ranging from 2.8x to 17.6x, while the
speedups we found for primes of these same sizes range from 16.5x to 116.3x, as given in Table 8.5.

Outline

After detailing our optimised version of the original walk in X2(Fp, 2) from [107] in Section 8.2,
in Section 8.3 we recall standard results concerning moduli spaces for genus-2 curves with split
Jacobians and Kumar’s formulae [206]. In Section 8.4 we present the main contribution of this
work: an efficient algorithm to detect (N,N)-splittings. We give the full algorithm and discuss our
implementation in Section 8.5. Finally, we present the experimental results in Section 8.6 before
we conclude by mentioning some possible avenues for improving the algorithm.

8.1 Preliminaries

For this chapter, a reader should be familiar with principally polarised abelian surfaces, namely
products of elliptic curves and Jacobians of genus-2 hyperelliptic curves, as defined in Section 2.5.
In particular, we work with superspecial abelian surfaces defined over finite fields and isogenies
between them, detailed in Sections 2.8.2, 2.9 and 4.1. By studying the structure of the super-
special dimension-2 isogeny graph (see Section 4.2.2), we analyse and improve upon the concrete
complexity of the best classical attack against the dimension-2 general isogeny problem detailed
in Section 4.3.2.

8.2 Optimised product finding in X2(Fp, 2)

The best known algorithm for solving the superspecial isogeny problem in dimension 2 exploits the
subset X2 = E2(Fp) ⊆ S2(Fp). It is depicted in Algorithm 8.1, and is due to Costello and Smith
[107]. Recall from Section 4.3.2 that the overall cost of the algorithm is Õ(p) bit operations, with

145

the bottleneck being Steps 1 and 2: finding paths φ : A→ E1 × E2 and φ′ : A′ → E′
1 × E′

2, where
both E1 × E2 ∈ E2(Fp) and E′

1 × E′
2 ∈ E2(Fp). From this point onwards, we focus on improving

the efficiency of this bottleneck step, as this will impact the concrete complexity of Algorithm 8.1.

Algorithm 8.1 Computing isogeny paths in X2(Fp, N) [107]

Input: A and A′ in S2(Fp)
Output: A path ϕ : A→ A′ in X2(Fp, N)

1: Find a path φ from A to some E1 × E2 in E2(Fp)
2: Find a path φ′ from A′ to some E′

1 × E′
2 in E2(Fp)

3: Find a path ψ1 : E1 → E′
1 using (elliptic curve) path finding

4: Find a path ψ2 : E2 → E′
2 using (elliptic curve) path finding

5: if length(ψ1) ̸≡ length(ψ2) (mod 2) then
6: return ⊥
7: else
8: Construct a path π : E1 × E2 → E′

1 × E′
2 using ψ1, ψ2 as in [107, Lemma 3]

9: return the path ϕ := φ̂′ ◦ π ◦ φ from A to A′

10: end if

The aim of this section is to describe an optimised instantiation of the product finding algorithm
given in Algorithm 8.1. Our instantiation uses pseudo-random walks in the superspecial subgraph
of the Richelot isogeny graph [154, Definition 1] and exploits a streamlined version of Takashima
and Yoshida’s Richelot isogeny algorithm [304] to take efficient steps therein.

8.2.1 Taking a step in X2(Fp, 2)

We start by deriving a streamlined version of Takashima and Yoshida’s Richelot isogeny algo-
rithm [304, Algorithm 2] that will be used as the basis for pseudo-random walks in the superspecial
subgraph of X2(Fp, 2).

On input of the six-tuple a = (a0, . . . , a5) ∈ (Fp2)6 defining2 the genus-2 curve

C/Fp2 : y2 = (x− a0) · · · (x− a5),

the algorithm outputs the six-tuple a′ = (a′0, . . . , a
′
5) ∈ (Fp2)6 that defines

C ′/Fp2 : y2 = (x− a′0) · · · (x− a′5),

where ϕ : JC → JC′ is the Richelot isogeny whose non-trivial kernel is precisely the three points
with Mumford coordinates ((x− ai)(x− ai+1), 0) ∈ JC [2] with i ∈ {0, 2, 4}. Using terminology
introduced by Smith [294], we say that this Richelot isogeny corresponds to the quadratic splitting
{(x− a0)(x− a1), (x− a2)(x− a3), (x− a4)(x− a5)}.

The main modifications we have made to their algorithm are:

• We assume that both the equations for C and C ′ are indeed given by the sextic polynomials
whose six roots are rational elements of Fp2 . This avoids the case distinctions made by

2For odd primes p, superspecial abelian surfaces always has full Fp2 -rational 2-torsion (see Section 4.1), which
in particular implies that the ai are defined over Fp2 .

146

Takashima and Yoshida that allow for quintic inputs and outputs (i.e., one of the ai and/or
a′j being at infinity), which are unnecessary for our purposes. Indeed, they occur with
negligible probability, and after a change of coordinates we may assume that C and C ′ are
defined by sextics.

• We do not keep track of the leading coefficient of the sextic, since this merely determines which
quadratic twist we are on, which is irrelevant for our application because twists correspond
to the same node in X2(Fp, 2). This means we avoid the final inversion in Line 33 of [304,
Algorithm 2].

• Each of the three iterations of their main loop involves separate inversion and square root
computations. In each case, we use InvSqrt, which merges the inversion and square root into
one combined inverse-and-square-root computation (see Line 7 of Algorithm 8.2) using the
trick described by Scott [281].

On top of a small, fixed, number of field multiplications, Algorithm 8.2 computes a Richelot
isogeny using 3 calls to InvSqrt, which is essentially the same cost as a square root in Fp2 (see
Section 7.2.1). This means our streamlined version saves all of the four additional inversions in
Fp2 reported by Takashima and Yoshida [304, §5.5]. Otherwise, the notation and description of
the algorithm is essentially unchanged: the indices in Line 3 of Algorithm 8.2 are taken modulo 6,
and the indices in Line 5 are taken modulo 3.

Algorithm 8.2 RIsog: A Richelot isogeny in the general case

Input: a = (a0, . . . , a5) ∈ (Fp2)6 defining C/Fp2 : y2 = (x− a0) · · · (x− a5).
Output: a′ = (a′0, . . . , a

′
5) ∈ (Fp2)6 defining C ′/Fp2 : y2 = (x− a′0) · · · (x− a′5), where

ϕ : JC → JC′ is a Richelot isogeny whose kernel contains the three points ((x− ai)(x− ai+1), 0)
for i = 0, 2, 4; and split, a boolean that is true if the image of ϕ is in E2(Fp).

1: Initialise λ← [a[0] · a[1],a[2] · a[3],a[4] · a[5]], θ ← [], a′ ← []
2: for j = 0 to 2 do
3: ρ← [a[2j + 2]− a[2j + 4],a[2j + 3]− a[2j + 5],a[2j + 2]− a[2j + 5],a[2j + 3]− a[2j + 4]]
4: θ[j]← ρ[0] + ρ[1]
5: ν ← λ[j + 1]− λ[j + 2]
6: δ ← ρ[0] · ρ[1] · ρ[2] · ρ[3].
7: (µ, κ)← InvSqrt(θj , δ)
8: (a′[2j],a′[2j + 1])← ((ν + κ) · µ, (ν − κ) · µ)
9: end for

10: split← (λ[0] · θ[0] + λ[1] · θ[1] + λ[2] · θ[2]) = 0
11: return (a′, split)

Alternatives for computing (2n, 2n)-isogenies. There are numerous ways to compute chains
of (2, 2)-isogenies that would be fit for our purposes, but we are yet to find one that can appreciably
outperform repeated calls to Algorithm 8.2. Recall that each such call computes a (2, 2)-isogeny
using a fixed number of Fp-multiplications on top of three calls to the merged inversion-and-square
root computation (i.e., InvSqrt). Castryck and Decru’s multiradical variant of a Richelot isogeny

147

also requires at least three square root computations in Fp2 [69, §4.2], so the most we could expect
to gain using their formulae is in the constant number of additional Fp-operations (assuming any
field inversions required in their case can also be absorbed into the square root calls). Kunzweiler’s
efficient (2n, 2n)-isogeny algorithm [207] could also be used in our scenario, but in testing this
algorithm against ours we observed that, on average, ours performs between 3x and 5x faster
for the two primes considered by Kunzweiler. Note, Kunzweiler’s formulae were derived with a
different target application (i.e., G2SIDH) in mind, meaning computing a chain of (2, 2)-isogenies
of fixed length n is most efficient when 2n | p+ 1. In our algorithm, we compute chains of length
much larger than any such n and, as a result, this comparison is unfair to [207]. Our comparison
is to ensure that we are not sacrificing efficiency in our context. An alternative is the algorithm
developed by Dartois, Maino, Pope, and Robert [117] for computing a chain of (2, 2)-isogenies
using theta coordinates. However, as with Kunzweiler’s formulæ, their algorithm for computing a
chain of length n is most efficient when our starting Jacobian has full Fp2 -rational 2n-torsion, and
so is unlikely to be competitive with RIsog for a general prime p.

8.2.2 Walking in the superspecial subgraph of X2(Fp, 2)

We now turn to describing walks in the superspecial subgraph of X2(Fp, 2) that take steps using
the RIsog algorithm developed above. To ensure that these walks are non-backtracking and avoid
short cycles, the output of RIsog must first be permuted so that the quadratic splitting implicit
to its ordering (see Section 8.2.1) corresponds to a good extension of the previous (2, 2)-isogeny,
i.e., a (2, 2)-isogeny whose kernel intersects trivially with the kernel of the dual of the previous
(2, 2)-isogeny.

Kernel permutations corresponding to good extensions. Following Castryck, Decru, and
Smith [72], there are 8 non-equivalent permutations of our ai which correspond to good extensions
of the previous (2, 2)-isogeny. Our walks are deterministically defined by pseudorandom bitstrings.
Each step uses three bits to choose which of the 8 good extensions defines our next (2, 2)-isogeny.
Using [72, Proposition 3], we define the function a← PermuteKernel(a, bits) by

a←

(a[0],a[2],a[1],a[4],a[3],a[5]) , bits = 0|0|0;
(a[0],a[2],a[1],a[5],a[3],a[4]) , bits = 0|0|1;
(a[0],a[3],a[1],a[4],a[2],a[5]) , bits = 0|1|0;
(a[0],a[3],a[1],a[5],a[2],a[4]) , bits = 0|1|1;
(a[0],a[4],a[1],a[2],a[3],a[5]) , bits = 1|0|0;
(a[0],a[4],a[1],a[3],a[2],a[5]) , bits = 1|0|1;
(a[0],a[5],a[1],a[3],a[2],a[4]) , bits = 1|1|0;
(a[0],a[5],a[1],a[2],a[3],a[4]) , bits = 1|1|1.

Remark 8.2.1. Recall that under a mild conjecture on the associated eigenvalues stated in Con-
jecture 4.2.9, Florit and Smith [155] show that, despite Richelot isogeny graphs not having optimal
expansion, walks of length O(log p) still approximate the stationary distribution on X2(Fp, 2). This
statement is implicitly assuming that walks are unrestricted, i.e., that each step can take any one
of the 15 outgoing Richelot isogenies. In choosing to restrict each step in X2(Fp, 2) to the 8 good

148

edges with the aim of avoiding fruitless cycles, we are under the implicit assumption that these
walks also rapidly approximate the stationary distribution. All of our experiments over small
primes produced results that support this assumption (see Section 8.6), and Florit and Smith [155,
§6.4] also comment in its favour. Nevertheless, if future research provides evidence to the contrary,
modifying our walks to include the 6 other extensions is straightforward. In this case we could
either aim to prohibit certain sequences of isogenies that cycle back to prior nodes, or (since we
abandon walks after a small number of steps – see below) simply tolerate the possibility of revis-
iting prior nodes. Even if a walk did cycle back and hit a prior node, in general we would have a
14−n chance of continuing along the same path for n steps thereafter.

Pseudorandom walks in the superspecial subgraph of X2(Fp, 2). A given step of our
pseudorandom walk can now be defined as a ← Step(a, bits), where the function Step is simply
given by

Step(a, bits) = RIsog(PermuteKernel(a, bits)).

Recall from Lines 1 and 2 of Algorithm 8.1 that our goal is to find a path φ from A ∈ S2(Fp) to
some E1 × E2 ∈ E2(Fp). In principle, one could continue walking deterministically from the input
node A ∈ S2(Fp) for as long as it takes to find the splitting E1×E2 ∈ E2(Fp), but the length of this
path would be O(p). To ensure a compact description of the solution, we instead take a relatively
small number of steps from A ∈ S2(Fp) before abandoning a walk, returning to A ∈ S2(Fp), and
starting again.

Our implementation uses MAGMA’s inbuilt function SHA1 : {0, 1}∗ → {0, 1}160 to generate pseu-
dorandom walks consisting of 160 Richelot isogeny steps as follows. We start by setting H0 :=

StartingSeed(a), where a ∈ (Fp2)6 defines the input node A ∈ S2(Fp), and where StartingSeed
merely concatenates and parses the 12 Fp components of a in order to be fed as input into SHA1.
We then define the function Hash : {0, 1}∗ → {0, 1}480 as Hash : s 7→ SHA1(s)||SHA12(s)||SHA13(s),
where SHA12(s) denotes SHA1(SHA1(s)), etc. Our first walk in X2(Fp, 2) is defined by H1 =

Hash(H0); these 480 bits are used (three bits at a time) to give 160 steps away from A ∈ S2(Fp),
at which point we return back to A ∈ S2(Fp) and repeat the process by using Hi+1 = Hash(Hi) for
i = 1, 2, . . . , until one of our calls to RIsog returns split = true, at which point our walks have hit
a node in the special subset E2(Fp). To proceed to the elliptic curve path finding in Steps 3 and 4
of Algorithm 8.1, the j-invariants of the elliptic curves in the product of the final (2, 2)-isogeny are
determined using [72, §6.2]. This concludes the description of our implementation of the generic
product finding algorithm from [107] that works entirely in X2(Fp, 2).

Choice of Optimisations. In our search for product curves we use optimised walks in X2(Fp, 2),
rather than adopting Castryck and Decru’s multiradical isogenies [69] to walk in Γ2(3; p). Indeed,
their hash function built from multiradical (3, 3)-isogenies between superspecial genus-2 Jacobians
outperforms its (2, 2)-counterpart by a factor of around 9. We first note that the bulk of the
Castryck–Decru speedup comes from their hash function processing 3 trits of entropy per (3, 3)-
isogeny, rather than 3 bits of entropy processed by a (2, 2)-isogeny. In our application, however,
entropy is irrelevant, and we are only interested in the raw cost of taking one step in the graph.
Nevertheless, Castryck and Decru still report approximately a 2.7x speed-up for a multiradical

149

(3, 3)-isogeny (which is dominated by 3 cube roots over Fp2) compared to a multiradical (2, 2)-
isogeny (which is dominated by 3 square roots over Fp2), with this factor coming directly from the
relative performance of cube roots and square roots in Fp2 in MAGMA. In our implementation, we
optimise the computation of the square roots in Fp2 in terms of exponentiations and multiplications
in Fp using the tricks due to Scott [281, §5.3] (see Section 7.2.1 for more details), and we are
unaware of analogous (or any) tricks in the cube root case that could outperform the square root
computation.

Furthermore, we use walks in X2(Fp, 2) that do not store or recycle any information from
previous steps. Indeed, we could not see an obvious way to (re)use any of the three square roots in
Line 7 of Algorithm 8.2 to compute the other 7 good extensions. We remark that this is a feature
of our choice to walk using only good extensions, and we could in fact recycle these square roots
to compute some of the bad extensions. If it turns out that there is a way to compute all 8 of the
image tuples a in appreciably fewer operations than calling the RIsog algorithm on all 8 kernels
individually, then one could define an octonary tree in an analogous fashion to the binary tree used
in SuperSolver, as described in Section 7.2.3.

Remark 8.2.2. Since the work in this chapter was completed, a new paper on computing radi-
cal (2, 2)-isogenies using theta coordinates has been made public [208]. Similarly to RIsog, their
formulas allow us to efficiently navigate X2(Fp, 2) taking only good extensions. Due to the level-2
structure imposed by the theta model, radical 2-isogenies in the theta model may give a promising
speed up. It wouldx therefore be interesting to further investigate if they can outperform RIsog.

8.3 Explicit moduli spaces for genus 2 curves with split Ja-

cobians

We give a brief review of some well known facts about genus-2 curves with split Jacobians and
their moduli. The reader wishing for a more in-depth discussion is encouraged to consult, for
example, [57, §2], [163], [205], or [206].

8.3.1 The Igusa–Clebsch invariants of a genus-2 curve

Let k be a field of characteristic not equal to 2. Let M2 denote the variety whose points [C] ∈
M2(k) correspond to the k-isomorphism classes of genus-2 curves C defined over k.

As explicitly defined in Section 2.5.2, we may associate to any genus-2 curve C/k its Igusa–
Clebsch invariants I2(C), I4(C), I6(C), and I10(C), where the subscript denotes the weight of the
invariant. Moreover, the isomorphism class of C/k is uniquely determined by its Igusa–Clebsch
invariants. This induces a birational k-morphismM2 ↪→ P(1, 2, 3, 5) given by associating to a class
[C] its Igusa–Clebsch invariants [I2(C) : I4(C) : I6(C) : I10(C)].

8.3.2 Optimal splittings of Jacobians of a genus-2 curves

Let C be a curve of genus 2 defined over a field k. Recall that we say the Jacobian JC of C is split
(over k) if there exists a (polarised) separable k-isogeny ϕ : JC → E1 × E2 where E1/k and E2/k

150

are elliptic curves.3

To work explicitly with subvarieties of M2 which parametrise genus-2 curves with split Ja-
cobians, we will restrict our focus to Jacobians which are split by an (N,N)-isogeny. However,
without imposing further conditions on the isogeny, our subvarieties will not be irreducible. Fol-
lowing Bruin–Doerksen [57, §2], we make the following definition:

Definition 8.3.1. Let k be a field, C/k be a curve of genus 2, and E/k be an elliptic curve. We
say that a cover (i.e., a surjective morphism) ψ : C → E of degree N is optimal if N is coprime to
the characteristic of k and ψ does not factor through a non-trivial unramified covering.

We say that a polarised separable isogeny φ : JC → E1 × E2 is an optimal (polarised) (N,N)-
splitting if φ is an (N,N)-isogeny and the covering C → E1 induced by φ and the Abel–Jacobi
map4 is optimal. In this case JC is said to be optimally (N,N)-split.

In our application N will be an integer ≤ 11 and k will be the finite field Fp2 for some prime
number p ≫ 11, so the assumption that φ is separable will be automatically satisfied. In fact,
every splitting factors through an optimal (N,N)-splitting. More precisely, we have the following
proposition.

Proposition 8.3.2. If JC is split (over k) then there exists an integer N ≥ 2 such that JC is
optimally (N,N)-split (over k).

Proof. We closely follow [57, Proposition 2.8]. Since JC is split, there exists a separable k-isogeny
φ : JC → E1 × E2 where E1/k and E2/k are elliptic curves. Since φ is separable, there exists
an elliptic curve D1/k such that the morphism C → E1 induced by the Abel–Jacobi map and φ

factors through an optimal cover ψ : C → D1. By [57, Lemma 2.6], ψ gives rise to an optimal
(N,N)-splitting JC → D1 ×D2, where D2 is an elliptic curve and N is the degree of ψ.

8.3.3 The surfaces L̃N and LN

We write L̃N for the surface whose k-points parametrise (k-isomorphism classes of) pairs (C,φ)

where C is a curve of genus 2 and φ : JC → E1 × E2 is an optimal (N,N)-splitting.
Replacing φ with its composition with the natural isomorphism E1 × E2 → E2 × E1 gives an

involution5 on L̃N . We write LN for the quotient of L̃N by this involution. The natural map
L̃N −→M2, given by (C,φ) 7−→ [C], factors via L̃N → LN .

Kumar [206] gave explicit models of the surface L̃N for each integer N ≤ 11. In this range the
surfaces LN are rational (i.e., birational to A2), and they give an explicit model for the surface
L̃N as a double cover (i.e., a degree 2 cover) of LN together with the moduli interpretation of
LN . More specifically, they compute rational functions I2(r, s), I4(r, s), I6(r, s), I10(r, s) which
(after an appropriate projective rescaling) may be taken to lie in Z[r, s] and for which the following
diagram commutes

A2 P(1, 2, 3, 5)

LN M2

φN

3The convention that ϕ is separable contrasts with, e.g., [57, Definition 2.1].
4The Abel–Jacobi map C → JC gives an embedding of a curve C with genus g ≥ 1 into its Jacobian JC .
5An involution is a morphism that is its own inverse.

151

Here the maps on the left and right are birational and the rational map φN is given by (r, s) 7→
[I2(r, s) : I4(r, s) : I6(r, s) : I10(r, s)].

We will employ the following lemma to detect whether a Jacobian JC is optimally (N,N)-split
over k.

Lemma 8.3.3. The Jacobian of a genus-2 curve C/k is split over k if and only if there exists an
integer N ≥ 2 such that the point [C] ∈M2(k) lies in the image of LN →M2.

Proof. If JC is split, then it is optimally (N,N)-split for some integer N ≥ 2 by Proposition 8.3.2.
In this case, the corresponding point on L̃N maps to [C] on M2. Conversely, suppose [C] lies in
the image of LN → M2. Since the morphism L̃N → LN is a surjection on k-points, there exists
an optimal (N,N)-splitting φ : JC → E1 ×E2 such that the preimage of [C] under this morphism
is (C,φ) ∈ L̃N (k). Hence, JC is split.

Remark 8.3.4. Genus-2 curves with split Jacobians, and their moduli, have appeared many
times elsewhere in the literature. Indeed, when N = 2, 3 and 4, generic families of genus-2
curves with optimally (N,N)-split Jacobians were known classically from work of Legendre, Jacobi,
Hermite, Grousat, Burkhardt, Brioschi, and Bolza (see the introduction of [206] for a more in-depth
discussion).

More recently, the surfaces L̃N for 2 ≤ N ≤ 5 have been computed by exploiting the fact
that if JC is optimally (N,N)-split then there exist degree N morphisms C → E1 and C → E2.
Kuhn [205] revisited this problem when N = 3 and Shaska [283] gave a method for general N
for computing the surface L̃N together with a curve C/k(L̃N) such that JC is (N,N)-isogenous
to a product E1 × E2. This was extended to explicit computations when N = 3, 5 in [284] with
further partial results when N = 7. When 2 ≤ N ≤ 5, similar results also appear in various joint
works of Shaska together with Magaard, Volklein, Wijesiri, Wolf, and Woodland [226, 285, 286,
287] and the work Gaudry–Schost [176] of Bröker–Lauter–Howe–Stevenhagen [53] and Djukanović
[137, 138] when N = 3.

If a product of elliptic curves E1 × E2 is (N,N)-isogenous over k to the Jacobian of a genus-
2 curve then there exists a Galois equivariant isomorphism between their N -torsion subgroups
which is anti-symplectic with respect to the Weil pairing (see e.g., [57, Proposition 2.8]). This
description was employed by Bruin–Doerksen [57] to compute the surface L̃4. Indeed, this implies
that the surface L̃N is birational to the modular diagonal quotient surface Z(N,−1) constructed
by Kani and Schanz [197]. The surfaces Z(N,−1) have been computed for several values of
N > 11. In particular Fisher [152, 153] computed Z(13,−1) and Z(17,−1) and Frengley [162]
computed Z(12,−1). However, while these models recover the image E1×E2 of the splitting, they
do not immediately give the genus-2 curve C. It would be interesting to give the degree 2 map
Z(N,−1)→M2 which recovers the moduli description of L̃N .

8.3.4 The image of the morphism LN →M2

Recall that we have a map LN →M2 → P(1, 2, 3, 5) given by the Igusa–Clebsch invariants. The
(Zariski closure of) the image of this map is a projective surface given by the vanishing of a
polynomial FN ∈ Z[I2, I4, I6, I10] which is homogeneous with respect to the weights.

152

If k is a field of characteristic coprime to 2N , the Jacobian of a genus-2 curve C/k is optimally
(N,N)-split over k if and only if

FN (I2(C), I4(C), I6(C), I10(C)) = 0.

For 2 ≤ N ≤ 5 the polynomial FN was computed by Bruin–Doerksen [56, 57, Theorem 1.2] and
Shaska, Magaard, Volklein, Wijesiri, Wolf, and Woodland [226, 285, 287].

Such equations may be computed from Kumar’s formulae [206]. For each N ≤ 5 we interpolate
the image of φN modulo a small number of primes ≈ 2128. Lifting these equations to characteristic
zero with the LLL algorithm gives a candidate for FN .

Since FN is an irreducible polynomial and the image of φN is an irreducible variety, we verify the
result in MAGMA by checking that FN vanishes at the equations defining φN . These polynomials are
available in the code accompanying this chapter, and their properties are summarised in Table 8.2.

Remark 8.3.5. As pointed out to us by Benjamin Smith, for a generic genus-2 curve C : y2 =

(x−a0) . . . (x−a5) the polynomial F2(I2(C), I4(C), I6(C), I10(C)) is (up to a scaling factor) equal
to the square of the product of the determinants of the 15 Richelot kernels. This gives a connection
to the classical work of Bolza [37, p. 51] where this is the invariant which Bolza calls R2.

N Weighted degree of FN
Number of

monomials in FN

Average bitlength of the
coefficients of FN

2 30 34 ∼ 16.6

3 80 318 ∼ 64.3

4 180 2699 ∼ 197

5 480 43410 ∼ 617

Table 8.2: The number of monomials in the defining equation FN for the image of LN in P(1, 2, 3, 5) and
the total number of bytes required to (naively) store the coefficients of each FN .

8.4 Efficient detection of (N,N)-splittings

In this section we present an algorithm to efficiently detect whether, at each step, the p.p. abelian
surface JC is (N,N)-isogenous over Fp to a product of elliptic curves, without ever computing
an (N,N)-isogeny. We are able to use resultants and gcd computations, rather than inefficient
computations of (N,N)-isogenies, therefore avoiding all N th-root calculations and the need to
work in extension fields when the N -torsion is not fully Fp2-rational.

A natural starting point to perform this detection is to exploit the equations FN for the image
of the morphism LN → P(1, 2, 3, 5) (see Section 8.3.4). Indeed, if a genus-2 curve C/Fp2 is (N,N)-
split, then FN (I2(C), I4(C), I6(C), I10(C)) = 0. However, as demonstrated in Table 8.2, both the
number of monomials in FN and the bitlength of its coefficients grow rapidly with N . As a result,
computing and storing FN for N > 5 is challenging. Instead, we will use techniques in elimination

153

theory to determine whether [C] lies on the (Zariski closure of) the image of φN . Indeed, even for
N ≤ 5, evaluating the image at the Igusa–Clebsch invariants of C will not outperform this method.

Lemma 8.4.1. Let N ≥ 2 be an integer and C/k be a genus-2 curve defined over a field k of
characteristic not dividing 2N . Suppose that the Igusa–Clebsch invariants I2(C), I4(C), I6(C),
and I10(C) are non-zero. Write α1(C) =

I4(C)
I2(C)2 , α2(C) =

I2(C)I4(C)
I6(C) , and α3(C) =

I4(C)I6(C)
I10(C) . If

there exist r0 ∈ k ∪ {∞} and s0 ∈ k satisfying
α1(C) =

I4(r0,s0)
I2(r0,s0)2

,

α2(C) =
I2(r0,s0)I4(r0,s0)

I6(r0,s0)
,

α3(C) =
I4(r0,s0)I6(r0,s0)

I10(r0,s0)

then JC is optimally (N,N)-split over k. Here Iw(r, s) are as in Section 8.3.3.

Proof. The rational map ψ : P(1, 2, 3, 5) 99K A3 given by [I2 : I4 : I6 : I10] 7→
(
I4
I22
, I2I4I6

, I4I6I10

)
is

birational with inverse (α1, α2, α3) 7→
[
1 : α1 : α1

α2
:

α2
1

α2α3

]
. Moreover on the open subvariety (with

respect to the Zariski topology) of P(1, 2, 3, 5) where I2, I4, I6, and I10 are nonzero the map ψ

restricts to an isomorphism onto its image. The claim follows from the discussion preceding the
lemma.

Remark 8.4.2. It is common in the literature (e.g., [57, 190]) to choose the affine patch with
coordinates the absolute invariants 6(I22−16I4)

I22
, −12(5I32−176I2I4+384I6)

I32
, and 3888I10

I52
. Our choice is ad

hoc and made to optimise the algorithms in Section 8.4.2. In particular, the choice in Lemma 8.4.1
yields polynomials Pi,j in Lemma 8.4.5 of smaller degree. Choosing an affine patch of P(1, 2, 3, 5)
so that the analogous polynomials to Pi,j in Lemma 8.4.5 have minimal degree would likely lead
to improved performance of our algorithm.

Remark 8.4.3. In the code accompanying this chapter we provide a function InvariantsFromWeier-
strassPoints that, on input of the 6-tuple a = (a0, . . . , a5) ∈ (Fp2)6 of Weierstrass points, computes
the 3-tuple α(C) = (α1(C), α2(C), α3(C)) ∈ (Fp2)3 using a total of 291 multiplications and one
(merged) inversion in Fp. This is the first step of Algorithm 8.4.

Define polynomials fk(r, s) ∈ Z[α1, α2, α3][r, s] by

f1(r, s) = I4(r, s)− α1I2(r, s)2,

f2(r, s) = I2(r, s)I4(r, s)− α2I6(r, s),

f3(r, s) = I4(r, s)I6(r, s)− α3I10(r, s).

The following proposition follows immediately from Lemma 8.4.1.

Proposition 8.4.4. Suppose that C/k is a genus-2 curve with non-zero Igusa–Clebsch invariants.
If there exist r0 ∈ k ∪ {∞} and s0 ∈ k such that for each w ∈ {2, 4, 6, 10} we have Iw(r0, s0) ̸= 0

and fk(r0, s0) = 0, then JC is optimally (N,N)-split over k.

In Section 8.4.2 we describe a method for determining whether, given a genus 2 curve C/Fp
with superspecial Jacobian, there exists a point P ∈ A2(Fp) such that the polynomials fk(r, s)

154

vanish at P . Moreover, we determine lower bounds on their costs in terms of Fp-multiplications
for each N ∈ {2, 3, . . . , 11}.

8.4.1 The resultants of fj and fk

Fix an integer 2 ≤ N ≤ 11. For each distinct pair i, j ∈ {1, 2, 3}, define polynomials6

Ri,j(s) := resr(fi(r, s), fj(r, s)) ∈ Z[α1, α2, α3][s].

If C/k is a genus-2 curve then, since resultants are invariant under ring homomorphisms, by the
elimination property of the resultant (see e.g., [110, §3.6 Lemma 1]) the specialisations (Ri,j)[C](s) ∈
k[s], given by evaluating the coefficients of Ri,j(s) at α1(C), α2(C), and α3(C), vanish at the s-
coordinate of any common solution to the specialised polynomials (fj)[C](r, s).

However, these resultants (generically) have factors which correspond to unwanted solutions
(i.e., where one of the polynomials Iw vanishes). We make this more precise in the following
lemma, which follows from a direct calculation in MAGMA.

Lemma 8.4.5. Let L = Q(α1, α2, α3). When i ̸= j, there exist polynomials Qi,j ∈ Z[α1, α2, α3][s]

dividing Ri,j with the following property: for each pair r0, s0 ∈ L such that fk(r0, s0) = 0 for
k = 1, 2, 3 and Qi,j(s0) = 0, then Iw(r0, s0) = 0 for some w ∈ {2, 4, 6, 10}.

Moreover, the polynomials Pi,j =
Ri,j

Qi,j
∈ Z[α1, α2, α3][s] are coprime.

Applying [110, §3.6, Corollary 7] we have:

Proposition 8.4.6. Let C/k be a genus-2 curve such that Iw(C) ̸= 0 for each w ∈ {2, 4, 6, 10}.
If there exist r0, s0 ∈ k such that (fi)[C](r0, s0) = 0 for each i = 1, 2, 3 then the degree of
gcd((P1,2)[C], (P2,3)[C]) is at least 1.

Conversely, if s0 ∈ k is a root of gcd((P1,2)[C], (P2,3)[C]) then there exist r0, r′0 ∈ k∪ {∞} such
that (f1)[C](r0, s0) = (f2)[C](r0, s0) = 0 and (f2)[C](r

′
0, s0) = (f3)[C](r

′
0, s0) = 0.

In the electronic data attached to this chapter we give the polynomials Pi,j ∈ Z[α1, α2, α3][s]

for each pair i ̸= j.

8.4.2 An algorithm to detect (N,N)-split Jacobians

We now present our algorithm to efficiently detect whether the Jacobian of a genus-2 curve C/Fp2
is (N,N)-split for some integer 2 ≤ N ≤ 11. In Proposition 8.4.8, we then give an upper bound
on the number of Fp-multiplications required by the algorithm.

Precomputation step. We reduce the coefficients of the polynomials P1,2, P2,3 ∈ Z[α1, α2, α3][s]

from Lemma 8.4.5 modulo p to obtain polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][s], which are stored.

Evaluation and gcd step. Our approach is summarised in Algorithm 8.3. To test a given
genus-2 curve C/Fp2 with superspecial Jacobian, we specialise the coefficients of P̃1,2, P̃2,3 at
α(C) = (α1(C), α2(C), α3(C)), by running the algorithm EvalCoeffs, to obtain the polynomials

6If necessary, we swap the roles of Kumar’s r and s so that the polynomials Ri,j are of lowest degree (as noted in
the accompanying code). It would be interesting to find a birational transformation of A2 which minimises degRi,j .

155

(P̃1,2)[C], (P̃2,3)[C] ∈ Fp2 [s]. The EvalCoeffs algorithm takes as input P̃i,j and the invariants α(C),
and evaluates the coefficients of the polynomial at these invariants (see the proof of Proposi-
tion 8.4.8 for more details).

We then compute the gcd of (P̃1,2)[C] and (P̃2,3)[C] using the “inversion-free gcd” algorithm
InvFreeGCD from Chapter 7, modified to output the gcd explicitly, rather than a boolean.

If this gcd has degree≥ 1 then it has a root s0 ∈ Fp and (by Proposition 8.4.6) there exist r0, r′0 ∈
Fp ∪ {∞} such that (f1)[C](r0, s0) = (f2)[C](r0, s0) = 0 and (f2)[C](r

′
0, s0) = (f3)[C](r

′
0, s0) = 0.

By Proposition 8.4.4 to verify that JC is (N,N)-split it suffices to show that we may take r0 = r′0

such that Iw(r0, s0) ̸= 0 for each w ∈ {2, 4, 6, 10}. We verify the first condition by computing the
gcd of (f1)[C](r, s0), (f2)[C](r, s0), (f3)[C](r, s0), and if it has degree ≥ 1 computing a root r0 ∈ Fp.
We verify the second condition by checking that Iw(r0, s0) ̸= 0 for each w ∈ {2, 4, 6, 10} – we
abbreviate this to the function IgNonzero.

Remark 8.4.7. If JC is optimally (N,N)-split then Algorithm 8.3 will return true with high
probability. In this case [C] is a Fp2 -point on LN . Since φN : A2 99K LN is birational (over Fp)
it is an isomorphism outside a closed Fp-subvariety X ⊆ LN of dimension 1. But from the Weil
conjectures #LN (Fp2) = O(p4) and #X(Fp2) = O(p2). In particular, except in O(1/p2) of cases,
there exist r0, s0 ∈ Fp satisfying the conditions of Proposition 8.4.6.

Algorithm 8.3 IsSplit: detects whether a Jacobian is split

Input: A tuple α(C) = (α1(C), α2(C), α3(C)), the polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][r], and
an integer 2 ≤ N ≤ 11.
Output: A boolean bool that is true if JC is optimally (N,N)-split, and false otherwise.

1: (P̃1,2)[C] ← EvalCoeffs(P̃1,2,α(C))

2: (P̃2,3)[C] ← EvalCoeffs(P̃2,3,α(C))

3: g ← InvFreeGCD((P̃1,2)[C], (P̃2,3)[C])
4: if deg g ≥ 1 then
5: s0 ← ComputeRoot(g)

6: (f̃1)[C] ← EvalCoeffs(f̃1,α(C))

7: (f̃2)[C] ← EvalCoeffs(f̃2,α(C))

8: (f̃3)[C] ← EvalCoeffs(f̃3,α(C))

9: h← InvFreeGCD(InvFreeGCD(f̃1)[C](r, s0), (f̃2)[C](r, s0)), (f̃3)[C](r, s0))
10: if deg h ≥ 1 then
11: r0 ← ComputeRoot(h)
12: bool← IgNonzero(r0, s0)
13: if bool == true then
14: return true

15: end if
16: end if
17: end if
18: return false

The cost of Algorithm 8.3. We now determine an upper bound for the number of Fp-
multiplications required for the online part of this method (i.e., ignoring the cost of precom-
putation). For ease of analysis, we assume that Karatsuba multiplication is used in Fp2 , and hence

156

we cost one Fp2-multiplication as three Fp-multiplications. We remark that employing faster Fp2
arithmetic will only decrease the concrete cost of the algorithms we present.

Proposition 8.4.8. Let N ∈ {2, . . . , 11} be an integer, and let mons(N) be the set of monomials
in α1, α2, α3 appearing in the coefficients of P̃1,2 and P̃2,3 (which lie in Fp[α1, α2, α3]). For each
i = 1, 2, 3, let

di(N) = max({degree of αi in m | m ∈ mons(N)}).

The cost of steps 1–3 in Algorithm 8.3 (with input N) is at most

3(d1(N) + d2(N) + d3(N)) + 6m(N) + 2M(N) +
3

2
(dP (N) + 2)(dP (N) + 3)− 27

Fp-multiplications, where dP (N) = deg P̃1,2 + deg P̃2,3, m(N) = #mons(N), and M(N) is the
number of monomials in α1, α2, α3 appearing in the coefficients of P̃1,2 and P̃2,3 counting repeti-
tions.

Proof. We first evaluate the coefficients of P̃1,2, P̃2,3 ∈ Fp2 [α1, α2, α3][s] at the normalised invariants
α1(C), α2(C), α3(C) ∈ Fp2 using our evaluation algorithm EvalCoeffs on each polynomial. This
runs as follows. We first compute powers α1(C)

2, . . . , α1(C)
d1(N) where d1(N) is the maximum

degree of α1 appearing in mons(N) (as defined in the statement of the proposition). Similarly we
compute powers of α2(C) and α3(C) up to d2(N) and d3(N) respectively. This step is performed
using d1(N) + d2(N) + d3(N)− 3 multiplications in Fp2 .

From these powers, we obtain the monomials appearing in the coefficients of (P̃1,2)[C](s) and
(P̃2,3)[C](s) in at most 2m(N) Fp2 -multiplications, where m(N) = #mons(N). We then require
2M(N) Fp-multiplications (and 2M(N) additions) to construct the coefficients of (P̃1,2)[C] and
(P̃2,3)[C].

The final step computes the gcd of (P̃1,2)[C] and (P̃2,3)[C] using InvFreeGCD. This requires
3
2 (dP (N) + 2)(dP (N) + 3)− 18 Fp-multiplications by Proposition 7.3.4.

The cost from Proposition 8.4.8 depends only on N . Therefore, for each 2 ≤ N ≤ 11, we can
determine the total number of Fp-multiplications required for the detection per node revealed in
S2(Fp) for any prime p. We give these costs in Table 8.3.

Noting that, when N ̸= N ′ we may have non-empty intersection mons(N) ∩ mons(N ′), our
implementation of Algorithm 8.4 stores all evaluated monomials to avoid repeated computations.
In particular, the upper bound in Proposition 8.4.8 is often not sharp.

Remark 8.4.9. We note that, in practice, when our algorithm enters the if loop on Line 4
in Algorithm 8.3, we have yet to encounter a case where Steps 5–14 fail to return true. In
these cases the bound in Proposition 8.4.8 yields a bound on the cost of Algorithm 8.3. It is
however possible to construct examples of polynomials for which they would be necessary – e.g.,
f1(r, s) = r − 1, f2(r, s) = s− r(r + 1)(r − 1), and f3(r, s) = r + 1. It would be interesting to put
this observation on rigorous footing by showing that with overwhelming probability the roots r0
and r′0 guaranteed by Proposition 8.4.6 are equal.

Remark 8.4.10. We note that Remark 7.4.3 also applies in this context: replacing InvFreeGCD

with an adaptation of the Stehlé–Zimmermann algorithm could lead to improved concrete com-

157

N d1(N) d2(N) d3(N) m(N) M(N) dP (N)
Total #Fp

mults.
Total #Fp mults.
per node revealed

2 1 2 1 6 23 6 175 12.5
3 2 3 2 11 97 16 767 19.2
4 6 8 6 78 1136 35 4882 46.9
5 6 10 6 64 2500 92 18818 120.6
6 7 11 7 91 4118 114 29188 52.1
7 10 14 10 190 24779 294 182641 456.6
8 16 24 16 433 73454 340 325606 395.2
9 12 16 12 271 69648 540 582474 539.3
10 24 32 24 1005 260178 606 1082007 495.4
11 28 38 28 1345 669432 1120 3237198 2211.2

Table 8.3: Values of d1(N), d2(N), d3(N), m(N), M(N), and dP (N) for N ∈ {2, . . . , 11}. The final
columns respectively list the number of Fp-multiplications in Proposition 8.4.8 and the ratio of multipli-
cations to the number of (N,N)-isogenous p.p. abelian surfaces.

plexity of IsSplit. In fact, as the degrees of the polynomials we input into InvFreeGCD are larger
(compared with those in NeighbourInFp from Chapter 7), the efficiency gain could be even greater.

Alternative approach for N = 10 and 11. When N = 10, 11, several megabytes are required
to store the coefficients of the polynomials P̃i,j . Rather than computing the resultants R1,2 and
R2,3 and dividing out by the generic factors described in Lemma 8.4.5 to obtain P1,2, P2,3 as a
precomputation, the approach we pursued was to instead perform these two steps during the online
phase. Even still, our experiments (which were reinforced by the cost analysis above) revealed that
performing the detection for N = 10, 11 is suboptimal in our application to SplitSearcher (shown
in Algorithm 8.4) and slows the overall search down, even when the characteristic of the field is
very large. Thus, we leave the further optimisation of these computations as future work.

8.5 The full algorithm

In Section 8.2 we discussed our optimised implementation of the product-finding attack [107] that
works entirely in the Richelot isogeny graph X2(Fp, 2). In this section, we present SplitSearcher,
which leverages our efficient detection of nodes that are (N,N)-isogenous to nodes in the special
subset X2 = E2(Fp) by detecting (N,N)-splittings using Section 8.4.2. This improves on the
concrete complexity of product-finding when solving the dimension 2 isogeny problem.

8.5.1 SplitSearcher

Each time we take a step using a Richelot isogeny, we will use the methods from the previous
section to detect whether the current node is (N,N)-isogenous to a node in X2 (i.e., a product of
elliptic curves), for some subset of integers in 2 ≤ N ≤ 11. Using the algorithm from Section 8.4.2

158

makes this check much more efficient than, say, walking in X2(Fp, N); each node we step to would
require computing an (N,N)-isogeny which, at minimum, requires three N -th roots in Fp2 [69].

Each time we take a step and arrive at a new abelian surface, A, we are in one of two cases: either
A ∈ X2, i.e., is isomorphic to a product of elliptic curves, in which case the algorithm terminates,
or A is isomorphic to the Jacobian of a genus-2 curve C/Fp2 . In the latter case, SplitSearcher

calls Algorithm 8.3 to detect whether A is (N,N)-split for certain 2 ≤ N ≤ 11. The set of N ’s for
which this detection is performed is chosen to minimise the number of Fp-multiplications per node
revealed (either by stepping on them in X2(Fp, 2) or inspecting them via our splitting detection)
in S2(Fp). Since it only depends on the prime p, determining this optimal list of N ’s is performed
during precomputation.

If Algorithm 8.3 determines that A is (N,N)-split, the elliptic curves E1 and E2 can be recovered
by applying [224, Algorithm 4] or [94] to compute all (N,N)-isogenies from A. Alternatively, E1

and E2 may be recovered from Kumar’s equations [206] by solving for r0 and s0 in Proposition 8.4.4.
As both of these costs are negligible and do not affect the cost of finding such a splitting, we may
view this as a post-computation step and exclude it from our multiplication counts.

A precise formulation of the full algorithm for finding paths to the special subset X2 is given
by Algorithm 8.4. Along with the target abelian surface A ∈ S2(Fp), the auxiliary inputs into the
algorithm are the polynomials P̃1,2, P̃2,3 ∈ Fp[α1, α2, α3][r] (see Lemma 8.4.5), and the optimal set
N ⊆ {2, . . . , 11} (see Section 8.5.2). The hash function on Line 4 is assumed to be of the form
Hash : {0, 1}∗ → {0, 1}3ℓ, where ℓ is a positive integer, since we use three bits of entropy each time
we call the Richelot isogeny (i.e., Step algorithm) in Line 16. We choose ℓ to be large enough
that we can expect to find an elliptic product in walks of ℓ steps, but not too large, since storing
walks of up to ℓ steps requires more storage on average. Once the 3ℓ bits of entropy have been
consumed, the hash function is called again and the walk is restarted from astart (more on this
in Remark 8.5.1). The output returned by Algorithm 8.4 is of the form (path, N), where path is
a sequence of 3k bits (with k ≤ ℓ) and N is an integer: the 3k bits define a sequence of k Richelot
isogenies and the integer N specifies the final (N,N)-isogeny whose image is in E2(Fp).

Remark 8.5.1. In a real-world attack, we would expect to return to Line 4 of Algorithm 8.4 an
exponential number of times before the algorithm terminates. Thus, there are a number of ways
one could recycle information computed in the early stages of each walk to avoid recomputing them
over and over again. One solution that is easy to implement in view of Algorithm 8.4 would be
to store a hash table whose entries each correspond to the (hash of the) Igusa–Clebsch invariants
of any node that is visited and checked for (N,N)-splittings. Upon returning to a given node and
finding a collision in the hash table, the walk could simply avoid the tests for (N,N)-splittings
between Lines 8 and 11. Another approach would be to build a table of the six-tuples a that are
computed after the first t Richelot steps have been taken, alongside the label of the 3t-bit string
that took us there. Each time we return back to Line 4 and iterate the hash function, we simply
check to see if the first 3t bits are already in the table and, if so, we can skip straight to a.

Finally, as is mentioned by Costello and Smith [107], parallelising the search for product curves
is trivial. For P processors, we would simply compute P unique short walks from our target surface
A ∈ S2(Fp) and send each of the corresponding image surfaces A1, . . . , AP to a unique processor
as its assigned input surface.

159

Algorithm 8.4 SplitSearcher: finding paths to elliptic curve products

Input: astart = (a0, . . . , a5) ∈ (Fp2)6 defining a genus-2 curve C/Fp2 with superspecial Jacobian,
and a set N ⊆ {2, 3, . . . , 11}.
Output: A pair (path, N) where path is a path φ : JC → JC′ in X2(Fp, 2) and N is an integer
such that JC′ is optimally (N,N)-split.

1: split← false

2: H ← StartingSeed(astart) Section 8.2.1
3: while not split do
4: (H, i, path,a)← (Hash(H), 0, {∅},astart)
5: while i < ℓ and not split do
6: if N ̸= ∅ then
7: α(C)← InvariantsFromWeierstrassPoints(a) Remark 8.4.3
8: for N ∈ N do
9: split← IsSplit(α(C), P̃1,2, P̃2,3, N) Algorithm 8.3
10: if split then
11: return (path, N)
12: end if
13: end for
14: end if
15: bits← H[3i] ∥H[3i+ 1] ∥H[3i+ 2]
16: a, split← Step(a, bits) Section 8.2.2
17: path← path ∥ bits
18: i← i+ 1
19: end while
20: end while
21: return (path, 2)

8.5.2 Determining the optimal set N

Recall that, when we step to a new p.p. abelian surface A ∈ S2(Fp), we want to determine
if it is (N,N)-split for a set N ⊆ {2, . . . , 11} of N . We wish to determine the optimal subset
N ⊆ {2, . . . , 11}, i.e., the subset which minimises the number of Fp-multiplications per node
revealed in the graph. The first step towards determining this ‘multiplications-per-node’ ratio is
to count the number of nodes in S2(Fp) that are inspected inside the for loop of Algorithm 8.4
with a finite set of integers N ⊆ Z≥2. A first attempt would be to simply count the number of
neighbours a node A ∈ S2(Fp) has in X2(Fp, N), i.e., DN given by Equation (2.8) in Section 2.8.2.
However, this is an overcount as we now detail.

Suppose we take a non-backtracking walk

(8.1) A0
ϕ0−→ A1

ϕ1−→ · · · ϕn−1−−−→ An
ϕn−−→ · · ·

in X2(Fp, 2), and we inspect (N,N)-splittings for N ∈ N . If 0 ≤ m ≤ n are integers, let ϕm,n
denote the (2n−m, 2n−m)-isogeny ϕm−1 ◦ · · · ◦ ϕn and let ϕn,m denote ϕ̂m,n.

Firstly, if both N and 2kN are contained in N (for k ≥ 1), then any abelian surfaces (N,N)-
isogenous to An are automatically (2kN, 2kN)-isogenous to An+k. Therefore, we restrict to only
considering subsets N which do not contain pairs of integers M ̸= N with N = 2kM .

160

This restriction is not sufficient to stop double-counting nodes. Indeed, suppose N ∈ N with
N = 2M . Then any abelian surface (N,N)-isogenous to An will be (M,M)-isogenous to An+1.
In particular, such an abelian surface will also be (N,N)-isogenous to An+2. To rule out such
scenarios, we introduce the following restriction on our paths.

Definition 8.5.2. Let N ⊆ Z≥2 be a finite set of integers and let P be a walk of (2, 2)-isogenies
in X2(Fp, 2) as in Equation (8.1).

LetM,N ∈ N and suppose that there exist integersm,n ≥ 0 and (M,M)- and (N,N)-isogenies
ψM : Am → B and ψN : An → B. We say that P resists collisions for M,N if there exists an integer
i ≥ 0 and an isogeny Ψ: Ai → B such that ψM = Ψ ◦ ϕm,i and ψN = Ψ ◦ ϕn,i.

We say that P resists collisions for N if it resists collisions for every pair M,N ∈ N .

We are now able to state precisely the number of nodes checked between Lines 8–11 of Algo-
rithm 8.4, assuming our paths resist collisions for the set N .

Lemma 8.5.3. Let N ⊆ Z≥2 be a finite set of integers such that if N is non-empty, then there do
not exist distinct M,N ∈ N with N = 2kM for any k ≥ 1.

Let P be a path in X2(Fp, 2) which resists collisions for N . The number of nodes inspected per
step by running Algorithm 8.4 in P is at least

nodesN :=

∑
N∈N D′

N,2 if N contains a power of 2,∑
N∈N D′

N,2 + 1 otherwise

where
D′
N,2 = DN,2 −

∑
1≤k
2k|N

DN/2k,2

and DN,2 is the number of neighbours of a node in X2(Fp, N), given in Equation (2.8). Equality
holds for steps taken after maxN∈N (2 log(N)) steps.

Remark 8.5.4. It is important to note that the assumption that P resists collisions for N is mild
in practice. Indeed, when N contains only odd integers the assumption simplifies to requiring that,
in a walk in the (2, 2)-isogeny graph, any abelian surface (N,N)-isogenous to An is not (M,M)-
isogenous to Am for some m. The set N will consist only of integers ≤ 11 and our walks have
length O(log(p)). A collision of this sort therefore implies that An has an endomorphism of degree
O(log(p)). Heuristically there should be very few such abelian surfaces. Indeed in the dimension
1 case, by Proposition B.3 in the unpublished appendix to [222], the proportion of supersingular
elliptic curves with an endomorphism of degree at most O(log(p)) is O(log(p)3/2/p).

Proof. Suppose we have taken the following walk in X2(Fp, 2)

A0 → A1 → · · · → An → An+1 → · · · ,

applying Algorithm 8.4.
First note that if N contains a power of 2, then each successive p.p. abelian surface Ai is known

not to be a product of elliptic curves. By hypothesis, there do not exist distinct M,N ∈ N with

161

N = 2kM for any k ≥ 1. Therefore, since P resists collisions for N , for each distinct M,N ∈ N
the p.p. abelian surfaces (M,M)-isogenous to Am are not (N,N)-isogenous to An for all m,n ≥ 0.
In particular, it suffices to show that the number of p.p. abelian surfaces (N,N)-isogenous to Ai,
but not (N,N)-isogenous to Aj for each j < i, is equal to D′

N,2.
The claim follows immediately when N is odd, since the walk takes place in X2(Fp, 2). If N is

even, write N = 2ℓM where ℓ ≥ 1 and M is odd. In this case, for each 1 ≤ k ≤ ℓ, any p.p. abelian
surface (2ℓ−kM, 2ℓ−kM)-isogenous to An−k is (N,N)-isogenous to both An−2k and An. Therefore,
DN/2k,2 surfaces (N,N)-isogenous to An are (N,N)-isogenous to An−2k.

The claim follows by summing over 1 ≤ k ≤ ℓ. Note that equality holds if n− 2k ≥ 0 for each
1 ≤ k ≤ ℓ, i.e., we have taken at least 2ℓ steps.

We use the lemma above to determine, for each prime p, an optimal set N for which we perform
the detection of (N,N)-splittings during Algorithm 8.4.

Let cstep be the number of Fp-multiplications required to take a step in X2(Fp, 2) using Al-
gorithm 8.2, and let cig be the number of Fp-multiplications required to compute α(C) using
InvariantsFromWeierstrassPoints (see Remark 8.4.3). Finally, letting csplit(N) be the total num-
ber of Fp-multiplications required by Algorithm 8.3 (see Proposition 8.4.8 and Remark 8.4.9), we
obtain the following lemma.

Lemma 8.5.5. For a subset N ⊆ {2, 3, . . . , 11}, the number of Fp-multiplications required to run
Steps 7-18 of Algorithm 8.4 is at most

costN :=

cstep + cig +
∑
N∈N csplit(N) if N ̸= ∅,

cstep otherwise.

Proof. Given input defining a genus-2 curve C/Fp2 if N = ∅ then Steps 7-18 of Algorithm 8.4
require a single call to Step(a, bits), taking cstep Fp-multiplications.

Otherwise, Step 7 calls InvariantsFromWeierstrassPoints taking cig multiplications in Fp. For
each N ∈ N , the contents of the for-loop (i.e., Steps 8-11) require csplit(N) multiplications in Fp.
Finally, Steps 15-18 call Step(a, bits), again requiring cstep Fp-multiplications.

We consider subsets of {2, . . . , 11} satisfying the hypotheses of Lemma 8.5.3. As a precompu-
tation, amongst these subsets we determine the optimal set N for Algorithm 8.4 by choosing N to
minimise the number of Fp-multiplications per node revealed (either visited by the Richelot walk
or revealed by IsSplit). That is, we choose the N that minimises the ratio costN

nodesN
.

8.5.3 A bound on the cost of the SplitSearcher algorithm

We now discuss a heuristic upper bound for the concrete cost of finding a splitting of a genus-2
Jacobian using the SplitSearcher algorithm combined with an optimised walk in X2(Fp, 2).

First recall that our function InvariantsFromWeierstrassPoints terminates with 291 Fp-multiplications
and 1 Fp inversion. Bounding this inversion by 2 log(p) Fp-multiplications (i.e., by the worst case
where the binary expansion of the exponent consists only of 1’s), we have cig ≤ 291 + 2 log(p).

We now assume that the cost of IsSplit is bounded by the cost of its first 3 steps (see Propo-
sition 8.4.8 and Table 8.3 bounds depending only on N , and Remark 8.4.9 for a justification).

162

Finally, RIsog requires 63 Fp-multiplications and 3 calls to InvSqrt which costs at most 22+4 log(p)

Fp-multiplications (with the log(p) terms arising from 2 exponentiations). In particular, RIsog

costs at most 129 + 12 log(p) Fp-multiplications.
For primes of at least 150 bits, the set N = {4, 6} is the optimal set discussed in Section 8.5.2,

and we obtain an upper bound of

(8.2)
14 log(p) + 34490

664

Fp-multiplications per node revealed (assuming the heuristics from Remark 8.4.7 and Remark 8.5.4).
If we assume that the proportion of product nodes (amongst nodes inspected by Algorithm 8.4) is
equal to 5/p7 we would expect that Algorithm 8.4 requires

(8.3)
(
14 log(p) + 34490

5 · 664

)
p+O(log(p))

Fp-multiplications before encountering a product node.

8.6 Experimental results

We conducted experiments over both small and large primes, and the results are reported in Ta-
ble 8.4 and Table 8.5, respectively.

The small prime experiments were conducted so that we could run multiple instances of the full
Õ(p) search for product curves to completion. The four Mersenne primes of the form p = 2m − 1

with m ∈ {13, 17, 19, 31} were chosen as the field characteristics, and instances of the product-
finding problem were generated by taking a chain of 40 randomised Richelot isogenies away from
the superspecial abelian surface corresponding to C/Fp : y2 = x5+x. For the three smaller primes,
256 instances were generated, while for p = 231 − 1, we generated 10 such instances; each instance
is specified by a 6-tuple of Weierstrass points (see Section 8.2.1). We remark that the shapes of
the primes chosen in both tables is of little consequence: we merely made consistent choices of the
prime shape so that the same form of superspecial starting surface could be used throughout the
experiments.

All the instances were solved once using the original walk in X2(Fp, 2) described in Section 8.2,
and again using our improved SplitSearcher algorithm described in Section 8.5. For all four of
these primes, the set N = {2, 3} was optimal for use in SplitSearcher. In Table 8.4 we report the
average number of steps taken in X2(Fp, 2) for both algorithms, as well as the average number
of Fp-multiplications required to solve the problem. In the case of SplitSearcher, we additionally
report the average number of nodes searched. This includes both the nodes that were walked on
and those that were inspected using our (N,N)-splitting detection. As we might expect, this is
always relatively close to the number of steps taken in the Richelot-only walk.

Remark 8.6.1. Throughout this section, we assume that the number of nodes revealed by
SplitSearcher after s steps is equal to s · nodesN . Indeed, as discussed in Remark 8.4.7 and Re-

7This is the expected proportion of product nodes in a random walk in X2(Fp, 2), see [155, §6.2]. However,
preliminary experiments (see Table 8.4) indicate that in our walk (taking only good extensions) the proportion may
be closer to 1/p.

163

mark 8.5.4 an overcount should occur with very low probability. In particular, after O(p) steps we
would expect to overcount at most o(p) nodes. This heuristic is also supported by the experiments
reported in Table 8.4.

Walks in X2(Fp, 2) Walks in X2(Fp, 2)
without additional searching w. SplitSearcher in X2(Fp, N)

[107] (optimised in Section 8.2) This work

Prime No. inst. Av. steps Av. Fp Av. steps Av. nodes Av. Fp Improv.
p solved taken mults. taken covered mults. factor

213 − 1 256 6531 1839209 122 6536 188015 9.8x
217 − 1 256 101812 33538079 2154 116305 3474579 9.7x
219 − 1 256 475300 168095438 8593 464008 14104408 11.9x
231 − 1 10 238694656 118336348672 4856252 262237639 8787389743 13.4x

Table 8.4: Solving the product-finding problem using Richelot isogeny walks in X2(Fp, 2) only (left) vs.
using Richelot isogeny walks in X2(Fp, 2) together with SplitSearcher in X2(Fp, N) (right).

For cryptographically sized primes, we are unable to solve the product-finding problem, which
is why Table 8.5 instead reports the number of nodes that were searched when the number of
Fp-multiplications was bounded at 108. The main trend to highlight (in both tables) is that
the speed-up is increasing steadily as the prime grows in size: the number of Fp-multiplications
required for a single Richelot isogeny is proportional to the bitlength of p (due to the square root
computations), while the number of Fp-multiplications required to inspect the (N,N)-isogenous
neighbours (after computing the Igusa–Clebsch invariants) remains fixed as p grows. This is also
predicted by Equation (8.2), where the coefficient of the dominating log(p) term is 14/664 versus
12.

Interestingly, as shown in Table 8.5 the set N = {2, 3} is optimal for the 50- and 100-bit primes,
the set N = {3, 4} is optimal for the 150-bit prime, while the set N = {4, 6} takes over and reigns
supreme for all other reported bitlengths. Our implementation can be used to obtain the same
data for any other prime of interest, and the number of Fp-multiplications used per node can be
combined with the (average) number of nodes one expects to search through in order to get a very
precise estimate on the concrete classical security of the superspecial isogeny problem.

8.6.1 Possible improvements

There have been a number of choices made throughout this chapter which open up possible avenues
for improvement. We conclude by giving a non-exhaustive list of such improvements.

1. The parametrisation of LN given by Kumar [206] may be altered through composition with a
birational transformation of A2. There may be better choices of parametrisations for our pur-
poses, i.e., ones which minimise the degree of Pi,j . Furthermore, as detailed in Remark 8.4.2,
there are many ways to normalise the Igusa–Clebsch invariants, though it is unclear to us
which normalisations minimise the degrees that arise in the resultant computations.

164

Walks in X2(Fp, 2) Walks in X2(Fp, 2)

without additional searching with SplitSearcher in X2(Fp, N)

[107] (optimised in Section 8.2) This work

Prime p log(p)
nodes per
108 mults.

Fp-mults.
per node

Set
N ∈ {· · · }

nodes per
108 mults.

Fp-mults.
per node

Improv.
factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5x
244 · 335 − 1 100 85034 1176 2076517 48 24.5x

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2x

2144 · 335 − 1 200 42088 2376

{4, 6}

1802816 55 43.2x
2181 · 343 − 1 250 34083 2934 1771608 56 52.4x
5 · 2193 · 366 − 1 300 29317 3411 1745712 57 59.8x
2201 · 394 − 1 350 25581 3909 1719152 58 67.4x
2231 · 3106 − 1 400 22753 4395 1694584 59 74.5x
2204 · 3155 − 1 450 20729 4824 1672672 60 80.4x
2113 · 3244 − 1 500 20239 4941 1667360 60 82.4x
2293 · 3162 − 1 550 16835 5940 1619552 62 95.8x
5 · 2299 · 3188 − 1 600 15679 6378 1599632 63 101.2x
2404 · 3155 − 1 650 13848 7221 1562448 64 112.8x
283 · 3389 − 1 700 14530 6882 1580376 63 109.2x
2477 · 3172 − 1 750 12046 8301 1517960 66 125.7x
2107 · 3437 − 1 800 13228 7560 1548504 65 116.3x
2166 · 3431 − 1 850 11968 8355 1515304 66 126.6x
2172 · 3459 − 1 900 11427 8751 1500032 67 130.6x
2536 · 3261 − 1 950 10233 9772 1443592 69 141.6x
2721 · 3176 − 1 1000 8814 11346 1403752 71 159.8x

Table 8.5: The approximate number of multiplications required to search a single node using Richelot
isogeny walks in X2(Fp, 2) only (left) vs. using Richelot isogeny walks in X2(Fp, 2) together with Split-
Searcher in X2(Fp, N) (right).

2. Since the Weierstrass points of genus-2 curve with superspecial Jacobian are all Fp2-rational,
it may be desirable to work with the Rosenhain invariants which may be computed more
efficiently. To use our methods one would need to compute a birational model for the surface
LN (2) whose points parametrise optimally (N,N)-split Jacobians with full level 2 structure.
One approach is described in [179].

3. It may be possible to improve the complexity of the evaluations performed by EvalCoeffs
(see Section 8.4.2) by taking longer walks in the (2, 2)-graph and then batching the evaluations
using multi-point evaluation.

4. Knowledge of explicit equations for the surface LN for larger N would allow us to perform
efficient detection of (N,N)-splittings beyond N = 11. It may be possible to derive these
from the pre-existing equations for the surfaces Z(N,−1) (which parametrise pairs of elliptic
curves (N,N)-isogenous to a genus-2 Jacobian) in [152, Theorem 2.4], [153, Theorem 1.2],
and [162, Theorem 1.1], or by extending Kumar’s computations.

5. As was pointed out to us by Thomas Decru, it is possible to detect (2N, 2N)-splittings more
efficiently by taking partial steps in the (2, 2)-isogeny graph. Let C/Fp2 be a genus-2 curve
given by a Weierstrass equation y2 = (x−a0) · · · (x−a5). While we cannot take a full step in
X2(Fp, 2) (recovering the factorisation of the Weierstrass sextic for each of the (2, 2)-isogenous
curves) without computing square roots, we can compute the Igusa–Clebsch invariants of all

165

the neighbours of JC using only a small number of Fp-multiplications and a single batched
inversion. In this case we may detect (2N, 2N)-splittings of JC by applying IsSplit to each
of the (2, 2)-neighbours of JC . In the code attached to this chapter, this optimisation can
be enabled by setting split_after_22_flag = true. In our implementation of this idea,
and for the primes ranging between 50 and 1000 bits reported in Table 8.5, we observed
additional improvement factors ranging between 1.3-1.6.

166

Part III
Two-dimensional isogenies

167

Chapter 9

(3, 3)-isogenies on fast Kummer Surfaces

Robert’s formulation of the SIDH attacks [271] gave us a new powerful way to represent one-
dimensional isogenies of any degree, namely by embedding it into an isogeny of smooth degree
between higher dimensional abelian varieties. This new representation is most efficient in dimension
2, i.e., when we restrict to (N,N)-isogenies between p.p. abelian surfaces. As such, two-dimensional
isogenies have shown to be crucial tool in the construction of new isogeny-based protocols. In this
chapter, we present work on finding efficient formulæ for the computation of (N,N)-isogenies
between p.p. abelian surfaces. Though the method we exhibit is general and works for all odd N ,
we focus on the case N = 3 giving highly optimised and explicit formulæ. Furthermore, we present
a three-dimensional differential addition chain, and use it to construct (Nk, Nk)-isogeny kernels
correctly, efficiently, and securely. Combining these two, we build a cryptographic hash function
from (3, 3)-isogenies, which allows us to benchmark our algorithms against the state-of-the-art. The
benchmarks show that our algorithm for computing chains of (3, 3)-isogenies outperforms those in
the literature by at least a factor of 8. The methods we use lead to a constant time algorithm for
computing chains of (3, 3)-isogenies, and are therefore suited well for cryptographic applications.
This chapter is based on the joint work with Craig Costello and Benjamin Smith called

Efficient (3, 3)-isogenies on fast Kummer surfaces

which was accepted at the Sixteenth Algorithmic Number Theory Symposium (ANTS XVI), and
will appear in the Springer journal ‘Research in Number Theory’ [91]. Apart from small editorial
changes and merging the appendix with the main body, we present the paper as published.

Introduction

Isogenies of elliptic curves are well-understood, at least from an algorithmic point of view, in
theory and in practice. Given the Weierstrass equation of an elliptic curve E, and a generator
P of a finite subgroup of E, Vélu’s formulæ [314] allow us to write down polynomials defining a
normalized quotient isogeny Φ : E → E/⟨P ⟩ (with variants for alternative curve models [242], or
for rational subgroups with irrational generators [204]). Building on these formulæ, there also exist
highly efficient algorithms for evaluating an isogeny at points of E without deriving a polynomial
representation for the isogeny itself (including [27], [102], and [266], for example). Interest in these
formulæ and algorithms has recently intensified with the development of isogeny-based cryptography
as a source of cryptosystems conjectured to be resistant against quantum attacks.

As a generalization of an elliptic curve, we consider principally polarized abelian varieties, and
the first non-elliptic examples are Jacobians of genus-2 curves. Genus-2 curves are hyperelliptic

168

curves with affine model1

C : y2 = f(x) where f(x) is squarefree of degree 5 or 6 ,

in characteristic not dividing 30, and J is the Jacobian of C, a 2-dimensional principally polarised
abelian variety as defined in Section 2.3.

Mumford [245], Cantor [64], Grant [178], and Flynn [156, 158] laid the ground for explicit geo-
metric and number-theoretic computations with Jacobians of genus-2 curves. Cassels and Flynn’s
text [66] presents a unified view of genus-2 arithmetic. Later, Gaudry [175] proposed Kummer sur-
faces of genus-2 Jacobians as a setting for efficient discrete-logarithm-based cryptosystems, building
on a variant [83] of Lentra’s ECM factoring algorithm [215]. Recall from Section 2.5.1 that the
Kummer surface K of a Jacobian J is the image of the quotient morphism π : J → K = J /⟨±1⟩;
as such, it is the genus-2 analogue of the x-coordinate of elliptic curves. Geometrically, Kummer
surfaces have convenient models as quartic surfaces in P3 with 16 point singularities.

Cosset put Chudnovsky and Chudnovsky’s Kummer ECM into practice in [97], while high-
speed, high-security Kummer-based implementations of Diffie–Hellman key exchange [26, 48, 267]
and signature schemes [267, 268] can give significant practical improvements over elliptic curves in
many contexts.

However, while the basic arithmetic of genus-2 Jacobians and Kummer surfaces has matured,
and while cryptographic applications have driven great improvements in the efficiency of the re-
sulting formulæ and algorithms, the corresponding explicit theory of isogenies lags behind. First,
recall that just as elliptic isogenies factor naturally into compositions of scalar multiplications and
isogenies with prime cyclic kernel (i.e., isomorphic to Z/NZ with N prime), isogenies of abelian
surfaces (including Jacobians of genus-2 curves) decompose into compositions of scalar multiplica-
tions and (N,N)-isogenies (with kernel isomorphic to (Z/NZ)2).2 The fundamental task, then, is
to compute and evaluate (N,N)-isogenies where N is prime. We can do this on the level of the
Jacobian (using e.g. correspondences on genus-2 curves [294]), or we can use the fact that isogenies
commute with −1 to move down to the more tractable Kummer surfaces. Indeed, as Cassels and
Flynn note, “we lose nothing by going down to the Kummers, because [the map] lifts automatically
to a map of abelian varieties.” [66, §9.3].

The case N = 2 is classical: explicit methods and formulæ go back to Richelot [269], and
were re-developed in modern terms by Bost and Mestre [50] and Cassels and Flynn [66, §3]. Going
further, we find some first efforts at explicit curve-based formulæ for the case N = 3 by Smith [293]
(building on an ineffective general method due to Dolgachev and Lehavi [139]), and more general
results due to Couveignes and Ezome [109]. Moving to general Kummer surfaces, Bruin, Flynn,
and Testa [58], Nicholls [248], and Flynn [157] gave more powerful formulæ for N = 3, 4, and 5,
respectively, in a number-theoretic context; Nicholls even gives a method for general N . Flynn and
Ti [159] revisited the formulæ for N = 3 in a cryptographic context, and Decru and Kunzweiler
[130] further optimised these formulæ, drastically improving their efficiency. However, none of
these formulæ make use of the special symmetries of the most efficient Kummer surfaces that have

1In this chapter, we denote our algebraic curves by C rather than C to avoid a notational clash with the dual
fundamental theta constants.

2In some special cases, depending on the endomorphism ring of the Jacobian, we can also have isogenies with
cyclic kernel [141]. These isogenies are beyond the scope of this chapter.

169

been used in cryptographic implementations.
Bisson, Cosset, Lubicz, and Robert have advanced an ambitious program [35, 96, 223, 272,

273] based on the theory of theta functions [245] to provide asymptotically efficient algorithms for
arbitrary odd N (and beyond genus 2 to arbitrarily high dimension). The AVIsogenies software
package based on their results is publicly available [36]. These algorithms are certainly compatible
with fast Kummer surfaces, but they target isogeny evaluation for general abelian varieties, rather
than the construction of compact explicit formulæ in genus 2 that can be studied, analysed, and
optimised in their own right. Nevertheless, these techniques were recently revisited by Dartois,
Maino, Pope, and Robert [117] in the context of cryptography to efficiently compute chains of
(2, 2)-isogenies between products of elliptic curves in the theta model.

Contributions

In this chapter, we give a general method for deriving explicit formulæ for isogenies of fast Kummer
surfaces, optimizing the approach of Bruin, Flynn, and Testa by exploiting the high symmetry of
these “fast” surfaces, which are the most relevant for applications over finite fields. Our methods
are elementary in the sense that they avoid explicitly using the heavy machinery of theta functions
required in [98, 117, 224] (though of course theta functions implicitly play a fundamental role in
our techniques). We apply these methods to give explicit examples for N = 3 and 5. For example,
for N = 3 we obtain a map ϕ : K → K′ defined by

ϕ((X1 : X2 : X3 : X4)) = (ϕ1(X1, X2, X3, X4) : · · · : ϕ4(X1, X2, X3, X4)) ,

where

ϕ1(X1, X2, X3, X4) = X1

(
c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X

2
4

)
+ c5X2X3X4 ,

ϕ2(X1, X2, X3, X4) = X2

(
c2X

2
1 + c1X

2
2 + c4X

2
3 + c3X

2
4

)
+ c5X1X3X4 ,

ϕ3(X1, X2, X3, X4) = X3

(
c3X

2
1 + c4X

2
2 + c1X

2
3 + c2X

2
4

)
+ c5X1X2X4 ,

ϕ4(X1, X2, X3, X4) = X4

(
c4X

2
1 + c3X

2
2 + c2X

2
3 + c1X

2
4

)
+ c5X1X2X3 ,

and ci are rational functions in the theta-null constants a, b, c, d defining K and the coordinates
of the generators of the kernel (see Section 9.3.1 for the explicit expressions). This map can
be evaluated with at most 88 multiplications and 12 squarings in the field containing the theta
constants and generator coordinates.

To illustrate the potential benefits of our formulæ in practical applications, we give experimental
results on cryptographic hash functions based on chains of (3, 3)-isogenies, as in [70] and [130].
In Section 9.4 we present 3DAC: a three-dimensional differential addition chain, and use it to
construct (Nk, Nk)-isogeny kernels correctly, efficiently, and securely. Combined with our (3, 3)-
isogeny formulæ, this allows us to efficiently compute (3k, 3k)-isogenies on fast Kummer surfaces.
The hash function we define in Section 9.5 uses these isogenies, exploiting the efficient arithmetic of
fast Kummer surfaces for the first time, to gain speed-ups of between 8x and 9x over the Castryk–
Decru hash function [70] and between 32x and 34x over the Decru–Kunzweiler hash function [130].

170

Availability of Software

The source code accompanying this paper is written in MAGMA [49], Python and SageMath [311]
and is publicly available under the MIT license. It is available at

https://github.com/mariascrs/KummerIsogenies.

9.1 Fast Kummer surfaces and their arithmetic

Let k be a perfect field—typically, a finite field or a number field—of characteristic p ̸= 2, 3, or 5,
and fix an algebraic closure k. If k = Fq, then we measure the time complexity of our algorithms in
terms of elementary operations in Fq. We let M, S, and a denote the cost of a single multiplication,
squaring, and addition (or subtraction) in Fq, respectively.

In this chapter, we focus work in dimension 2, and study Kummer surfaces corresponding to
Jacobians of genus-2 curves defined over k. Therefore, we assume a reader is familiar with the
material introduced in Sections 2.3 and 2.5. In particular, we work with genus-2 hyperelliptic
curves C in Rosenhain form

C ∼= Cλ,µ,ν/k : y2 = x(x− 1)(x− λ)(x− µ)(x− ν) with λ, µ, ν ∈ k ;

the values λ, µ, and ν are called Rosenhain invariants of Cλ,µ,ν . For more details we refer to Defi-
nition 2.3.4.

Fix a prime N not divisible by char k. Recalling Section 2.6 and Section 2.8.2, if G is a maximal
isotropic subgroup of J [N], then the quotient isogeny of abelian varieties

Φ : J → A′ := J /G

is an isogeny of p.p. abelian varieties with kernel G. Such an isogeny Φ is an (N,N)-isogeny, and
the kernel is called as (N,N)-subgroup.

Being a p.p. abelian surface, A′ is (as a p.p. abelian variety) the Jacobian of a genus-2 curve,
say J ′, or a product of elliptic curves E′

1 × E′
2. The case A′ = J ′ is the general case, and the

primary focus of this paper.
In Section 9.5 we restrict superspecial Jacobians J , as defined in Section 4.1, which is the case

of most interest to cryptography.

9.1.1 Isogenies and Kummer surfaces

We recall from Section 2.5.1 that the Kummer surface K of a Jacobian J is defined to be the
image of the quotient map π : J → K = J /{±1}, and has sixteen nodes. Any (N,N)-isogeny
Φ : J → J ′ descends to a morphism of Kummer surfaces φ : K → K′, such that the following

171

https://github.com/mariascrs/KummerIsogenies

diagram commutes:
J J ′

K K′

Φ

π π′

φ

Abusing terminology, we say a morphism φ of Kummer surfaces is an (N,N)-isogeny if it is induced
by an (N,N)-isogeny Φ between the corresponding Jacobians.

9.1.2 Fast Kummer surfaces

Following Gaudry [175], fast Kummer surfaces are defined by four fundamental theta constants,
which can be computed from the Rosenhain invariants of a genus-2 curve C/k. Given a hyperelliptic
curve C/k with Rosenhain invariants λ, µ, ν ∈ k, we define fundamental theta constants a, b, c, d ∈ k
and dual theta constants as A,B,C,D ∈ k such that

A2 = a2 + b2 + c2 + d2, B2 = a2 + b2 − c2 − d2,

C2 = a2 − b2 + c2 − d2, D2 = a2 − b2 − c2 + d2.

The theta constants are related to Rosenhain invariants through the relations

λ =
a2c2

b2d2
, µ =

c2e2

d2f2
, ν =

a2e2

b2f2
,

where e, f ∈ k satisfy e2/f2 = (AB + CD)/(AB − CD).
We define the fast Kummer model K corresponding to C as

(9.1)
K : X4

1 +X4
2 +X4

3 +X4
4 − 2E ·X1X2X3X4 − F · (X2

1X
2
4 +X2

2X
2
3)

−G · (X2
1X

2
3 +X2

2X
2
4)−H · (X2

1X
2
2 +X2

3X
2
4) = 0,

where X1, X2, X3, X4 are coordinates on P3 and the coefficients E,F,G,H are rational functions
in a, b, c, d, namely

(9.2)

E := 256abcdA2B2C2D2/(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2),

F := (a4 − b4 − c4 + d4)/(a2d2 − b2c2),

G := (a4 − b4 + c4 − d4)/(a2c2 − b2d2),

H := (a4 + b4 − c4 − d4)/(a2b2 − c2d2).

This model of K is often referred to as the canonical parameterisation [268]. Note that A2, B2, C2,
and D2 are linear combinations of a2, b2, c2, and d2, so the equation of K is determined entirely by
a, b, c, d; in fact, K is determined by the projective point (a : b : c : d) ∈ P3. The identity element
on K is 0K = (a : b : c : d).

172

9.1.3 Nodes of the Kummer surface

The nodes of K are the sixteen points

0K = (a : b : c : d), T1 = (a : b : −c : −d), T2 = (a : −b : c : −d), T3 = (a : −b : −c : d),

T4 = (b : a : d : c), T5 = (b : a : −d : −c), T6 = (b : −a : d : −c), T7 = (b : −a : −d : c),

T8 = (c : d : a : b), T9 = (c : d : −a : −b), T10 = (c : −d : a : −b), T11 = (c : −d : −a : b),

T12 = (d : c : b : a), T13 = (d : c : −b : −a), T14 = (d : −c : b : −a), T15 = (d : −c : −b : a).

Each Ti is the image in K of a two-torsion point T̃i in J [2]. Since T̃i = −T̃i, the translation-by-T̃i
map on J induces a morphism σi : K → K. In fact, σi lifts to a linear map on A4: that is, it acts
like a matrix on the coordinates (X1, X2, X3, X4) on P3. Further, σi and σj commute, respectively
anticommute, if e2(T̃i, T̃j) = 1, respectively −1.

In particular, if we define

U1 := diag(1, 1,−1,−1), U2 := diag(1,−1, 1,−1),

and

V1 :=

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , V2 :=

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

Then

(9.3) U2
1 = U2

2 = I4, and U1U2 = U2U1 , V 2
1 = V 2

2 = I4, and V1V2 = V2V1 ,

and

(9.4) U1V2 = −V2U1 , U2V1 = −V1U2 , U1V1 = V1U1 , U2V2 = V2U2 .

Taking the labelling of the nodes above, with T0 = (a : b : c : d) as the image of the identity
T̃0 = 0J , the corresponding translations are such that

Ti = σi((a : b : c : d)) for 0 ≤ i ≤ 15 ;

that is,

σ0 = I4 σ1 = U1 σ2 = U2 σ3 = U1U2

σ4 = V1 σ5 = V1U1 σ6 = V1U2 σ7 = V1U1U2

σ8 = V1V2 σ9 = V1V2U1 σ10 = V1V2U2 σ11 = V1V2U1U2

σ12 = V2 σ13 = V2U1 σ14 = V2U2 σ15 = V2U1U2

Now Equation (9.3) and Equation (9.4) show that (T̃1, T̃2, T̃12, T̃4) is a symplectic basis (with
respect to the 2-Weil pairing) of J [2], where we define a symplectic basis as follows.

173

Definition 9.1.1. Let J be the Jacobian of a genus-2 curve C. A basis {Q1, Q2, Q3, Q4} for J [D]

is symplectic with respect to the D-Weil pairing if

eD(Q1, Q3) = eD(Q2, Q4) = ζ

where ζ is a primitive D-th root of unity, and eD(Qi, Qj) = 1 otherwise.

9.1.4 Operations on the Kummer surface

Let π : J → K be the quotient by −1. The multiplication-by-m maps [m] on J induce pseudo-
multiplications π(P) 7→ [m]∗(π(P)) = π([m]P). We can express the pseudo-doubling map [2]∗ on
K as a composition of four basic building blocks, each a morphism from P3 to P3:

1. the Hadamard involution H : P3 → P3, which is induced by the linear map on A4 defined by
the matrix

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ;

2. the squaring map

S : (X1 : X2 : X3 : X4) 7−→ (X2
1 : X2

2 : X2
3 : X2

4) ;

3. the scaling maps

C(α:β:γ:δ) : (X1 : X2 : X3 : X4) 7−→ (αX1 : βX2 : γX3 : δX4)

for each (α : β : γ : δ) ∈ P3(k); and

4. the inversion map

Inv : (X1 : X2 : X3 : X4) 7−→ (X2X3X4 : X1X3X4 : X1X2X4 : X1X2X3)

= (1/X1 : 1/X2 : 1/X3 : 1/X4) ,

well-defined when all Xi ̸= 0.

We can readily see that H costs 8 k-additions, S costs 4 k-squarings, C costs 4 k-multiplications, and
Inv costs 6 k-multiplications. Now, if K is a Kummer surface with fundamental theta constants
(a : b : c : d), then pseudo-doubling is given by

[2]∗ = CInv(0K) ◦ H ◦ S ◦ CInv((A:B:C:D)) ◦ H ◦ S .

Recall from Section 2.5.1 that while K inherits scalar multiplication from JC , it loses the group law:
for divisors DP , DQ, DP+Q ∈ JC , the points P = π(±DP) and Q = π(±DQ) on K do not uniquely
determine P + Q = π(±DP+Q), unless at least one of P and Q is the image of a point in JC [2].

174

However, the operation {P,Q} 7→ {P + Q,P − Q} is well-defined, so we have a pseudo-addition
operation (P,Q, P −Q) 7→ P +Q.

By abuse of notation, we let R = (r1 : r2 : r3 : r4) and S = (s1 : s2 : s3 : s4) be points on K, and
let T+ = (t+1 : t+2 : t+3 : t+4) and T− = (t−1 : t−2 : t−3 : t−4) denote the sum R+S and difference R−S,
respectively. There exist biquadratic forms Bij [66, Theorem 3.9.1] for K such that for 1 ≤ i, j ≤ 4

we have
t+i t

−
j + t−i t

+
j = λBij

(
r1, r2, r3, r4; s1, s2, s3, s4

)
= λBij(R;S),

where λ ∈ k is a common projective factor depending only on the affine representations chosen for
R, S, T+, T−. The biquadratic forms Bi,j for fast Kummer surfaces are given explicitly by Renes
and Smith [268, §5.2].

These biquadratic forms are the basis of explicit pseudo-addition and doubling laws on K. For
example, if the difference T− is known, then the Bij can be used to compute the coordinates of
T+. As we will see in Section 9.2, the Bij will also be crucial in determining equations for our
(N,N)-isogenies.

9.2 (N,N)-isogenies on fast Kummer surfaces

Throughout this section, the morphism Φ : J → J ′ is an (N,N)-isogeny with kernel G ⊂ J [N],
a maximal N -Weil isotropic subgroup of J [N], where N is a prime number not equal to the
characteristic of the base field k. Our goal is to compute an explicit and efficiently-computable
collection of polynomials defining the induced map φ : K → K′ when K and K′ admit fast models.

9.2.1 A warm-up with N = 2

We first dispose of the case N = 2. Let T̃0, . . . , T̃15 be the 16 points in J [2], and let T0, . . . , T15
be their images in K. Recall that Ti = σi(T0), where σi : K → K is a morphism defining the
translation-by-Ti map. There are precisely fifteen (images of) (2, 2)-subgroups in K, and they are
the images of

G̃ij :=
{
T̃0, T̃i, T̃j , T̃i + T̃j

}
⊂ J [2]

in K, where 1 ≤ i ̸= j ≤ 15 such that the linear maps corresponding to σi and σj commute.
Explicitly, the (2, 2)-subgroups on K with 0K = (a : b : c : d) are

G1,2 := {(a : b : c : d), (a : b : − c : − d), (a : − b : c : − d), (a : − b : − c : d)},

G1,4 := {(a : b : c : d), (a : b : − c : − d), (b : a : d : c), (b : a : − d : − c)},

G1,6 := {(a : b : c : d), (a : b : − c : − d), (b : − a : d : − c), (b : − a : − d : c)},

G2,8 := {(a : b : c : d), (a : − b : c : − d), (c : d : a : b), (c : − d : a : − b)},

G2,9 := {(a : b : c : d), (a : − b : c : − d), (c : d : − a : − b), (c : − d : − a : b)},

G3,12 := {(a : b : c : d), (a : − b : − c : d), (d : c : b : a), (d : − c : − b : a)},

G3,14 := {(a : b : c : d), (a : − b : − c : d), (d : c : − b : − a), (d : − c : b : − a)},

G4,8 := {(a : b : c : d), (b : a : d : c), (c : d : a : b), (d : c : b : a)},

175

G4,9 := {(a : b : c : d), (b : a : d : c), (c : d : − a : − b), (d : c : − b : − a)},

G5,10 := {(a : b : c : d), (b : a : − d : − c), (c : − d : a : − b), (d : − c : − b : a)},

G5,11 := {(a : b : c : d), (b : a : − d : − c), (c : − d : − a : b), (d : − c : b : − a)},

G6,8 := {(a : b : c : d), (b : − a : d : − c), (c : d : a : b), (d : − c : b : − a)},

G6,9 := {(a : b : c : d), (b : − a : d : − c), (c : d : − a : − b), (d : − c : − b : a)},

G7,10 := {(a : b : c : d), (b : − a : − d : c), (c : − d : a : − b), (d : c : − b : − a)},

G7,11 := {(a : b : c : d), (b : − a : − d : c), (c : − d : − a : b), (d : c : b : a)}.

This gives 15 corresponding (2, 2)-isogenies given by φ : K → K′ = K/Gi,j . For each unique
(2, 2)-subgroup, we can associate a morphism α : K → K induced by a linear map on A4 such that
the corresponding (2, 2)-isogeny K → K̃ is given by

ψ := H ◦ S ◦ α.

The non-zero entries of the 4 × 4 matrix A defining α are all fourth roots of unity. Let i be a
primitive fourth root of unity in k. We give matrices A specifying the linear map α for each of the
(2, 2)-subgroups below.

G1,2 : A =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , G1,4 : A =

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 ,

G1,6 : A =

1 i 0 0

1 −i 0 0

0 0 1 i

0 0 1 −i

 , G2,8 : A =

1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1

 ,

G2,9 : A =

1 0 i 0

1 0 −i 0

0 1 0 i

0 1 0 −i

 , G3,12 : A =

1 0 0 1

1 0 0 −1
0 1 1 0

0 1 −1 0

 ,

G3,14 : A =

1 0 0 i

1 0 0 −i
0 1 i 0

0 1 −i 0

 , G4,8 : A =

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,

G4,9 : A =

1 1 i i

1 1 −i −i
1 −1 i −i
1 −1 −i i

 , G5,10 : A =

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 ,

176

G5,11 : A =

1 −1 −i −i
1 −1 i i

1 1 −i i

1 1 i −i

 , G6,8 : A =

1 i 1 i

1 i −1 −i
1 −i 1 −i
1 −i −1 i

 ,

G6,9 : A =

1 −i −i −1
1 −i i 1

1 i −i 1

1 i i −1

 , G7,10 : A =

1 −i −1 −i
1 −i 1 i

1 i −1 i

1 i 1 −i

 ,

G7,11 : A =

1 i i 1

1 i −i −1
1 −i i −1
1 −i −i 1

 .

We note, however, that K̃ will not be in the fast Kummer correct form. We must therefore
apply a final scaling CU where U = (S−1 ◦ Inv ◦ ψ)(0K). From this we obtain a (2, 2)-isogeny
φ := CU ◦ ψ : K → K′ = K/Gi,j , where K and K′ are fast Kummer surfaces.

Example 9.2.1. Consider the (2, 2)-subgroup

G1,2 = {(a : b : c : d), (a : b : − c : − d), (a : − b : c : − d), (a : − b : − c : d)}.

Here α is the identity map and the (2, 2)-isogeny is given by

(X1 : X2 : X3 : X4) 7→(
X2

1 +X2
2 +X2

3 +X2
4

A
:
X2

1 +X2
2 −X2

3 −X2
4

B
:

:
X2

1 −X2
2 +X2

3 −X2
4

C
:
X2

1 −X2
2 −X2

3 +X2
4

D

)

We call this the distinguished kernel : the kernel of the first half of doubling. Indeed, U = (A :

B : C : D) and we recover the first three steps CInv(A:B:C:D) ◦ H ◦ S of the doubling map given
by Gaudry [175, §3.2] on fast Kummer surfaces.

Remark 9.2.2. Though the formulæ for (2, 2)-isogenies on fast Kummer surfaces are extremely
compact, we remark that the final scaling requires the computation of square roots in k. If R, S
are the 2-torsion points generating the isogeny, let P , Q ∈ K be such that R = [2]∗P , S = [2]∗Q.
The coordinates of P , Q contain the square roots needed for the final scaling (up to a projective
factor). We therefore suspect that these square roots may be inferred directly from coordinates of
the 4-torsion, though we have not been able to derive such formulæ.3

3Since this work was made public, it has become clear to this author that these square roots can instead be
extracted from the 8-torsion points lying above the kernel generators; see [117].

177

9.2.2 The general case: odd N

From this point forward, we suppose N is an odd prime. Since N is odd, the (N,N)-isogeny
Φ restricts to an isomorphism of 2-torsion subgroups J [2] → J ′[2]. Furthermore, since Φ is an
isogeny of p.p. abelian varieties it is compatible with the N -Weil pairing by definition, and so
it maps the symplectic structure on J [2] associated with the fast Kummer K onto a symplectic
2-torsion structure on J ′[2], which is associated with a fast Kummer K′. The isogeny Φ therefore
descends to a morphism φ : K → K′ of fast Kummers. Our goal is to construct explicit equations
for φ.

To do so, we follow the strategy taken by Cassels and Flynn [66, §9], Bruin, Flynn, and Testa
[58], Nicholls [248, §5], and Flynn [157], adapting it to the case of fast Kummer surfaces. We will
observe that the special forms of the affine translation maps σi are very helpful in this setting, and
lead to nice results.

In practice, we are given a fast Kummer K and the image π(G) of an (N,N)-subgroup G of
J in K. There exists a fast Kummer K′ ∼= (J ′/G)/⟨±1⟩, and our goal is to find K′ and the map
φ : K → K′ induced by the quotient (N,N)-isogeny Φ with kernel G. Crucially, φ “commutes”
with the action by 2-torsion points, in the sense of the following definition.

Definition 9.2.3. An isogeny of fast Kummer surfaces is a morphism φ : K → K′ induced by an
isogeny Φ : J → J ′ such that when lifted to a map on the ambient space, we have

φ ◦ UK
i = UK′

i ◦ φ and φ ◦ V K
i = V K′

i ◦ φ for i = 1, 2 ,

where Ui and Vi are as defined in Section 9.1.3.

We want to compute φ : K → K′, but K′ is unknown. However, as K and K′ are both embedded
in P3, φ must be defined by forms of degree N , and it must commute with the actions of the Ui
and Vi. This imposes heavy constraints on the shape of the forms defining φ, and we can hope to
interpolate them using linear algebra given the action of G, and therefore to interpolate the image
Kummer K′ by pushing the theta constants (a : b : c : d) through the isogeny.

Let K[N] be the image of J [N] in K and fix R,S ∈ K[N]. From this point forward, we write
⟨R,S⟩ ⊂ K[N] for the image of the subgroup G of J [N] generated by the preimages of R,S. By
abuse of notation, we say that R, S are N -torsion points on K.

The first step is to compute two sets of homogeneous forms of degree N in the coordinates
of K that are invariant under translation by R and by S. The following lemma, due to Nicholls
[248, §5.8.4], describes how we can use the biquadratic forms associated to the Kummer surface
introduced in Section 9.1.2 to construct these homogeneous forms.

Lemma 9.2.4. Fix Kummer surface K with coordinates X1, X2, X3, X4 and associated biquadratic
forms Bi,j for 1 ≤ i, j ≤ 4. Let N be an odd prime number, and fix a point R ∈ K[N] of order N .

We denote by I ∈ {1, 2, 3, 4}N a list of indices I = (i1, . . . , iN). Letting τ be a permutation of
{1, . . . , N}, we write

τ(I) = τ((i1, . . . , iN)) := (iτ(1), . . . , iτ(N)).

178

Then, for each I ∈ {1, 2, 3, 4}N we define

FI :=
∑
τ∈CN

Xiτ(1)
·
(N−1)/2∏
k=1

Biτ(2k),iτ(2k+1)
(X1, X2, X3, X4; kR) ,

where CN is the cyclic group of order N . Then, the set FR := {FI} contains homogeneous forms
of degree N invariant under translation by R.

Applying the lemma above to N -torsion points R and S, we obtain the two sets FR and FS .
The homogeneous forms of degree N in each set will generate a space of dimension mN ≥ 4. Our
experiments suggest mN = 2N + 2 for N ≤ 19, and possibly beyond, though we have not proven
this.4

The next step is to compute a basis for these two spaces, say FR1 , . . . , F
R
mN

is a basis for the
space generated by the homogeneous forms in FR, and FS1 , . . . , FSmN

a basis for the space generated
by FS .

The intersection of these spaces contains homogeneous forms of degree N that are invariant
under translation by any point in the kernel G of our (N,N)-isogeny. The intersection will be of
dimension 4, and a basis for this intersection gives an (N,N)-isogeny ψ : K → K̃. Explicitly, the
third step is to compute a basis of this intersection, say f1, f2, f3, f4. Then, our (N,N)-isogeny
is given by ψ = (f1 : f2 : f3 : f4).

We note that K̃ may not be in the correct form given by Equation (9.1). When computing
chains of isogenies, however, it is important to ensure that our (N,N)-isogenies have domain and
image in the same form. Therefore, the last step is to apply a linear transformation M : K̃ → K′,
where K′ is a fast Kummer surface. Post-composing the map ψ with this linear transformation
gives a k-rational (N,N)-isogeny φ : K → K′ between fast Kummer surfaces generated by the
kernel G = ⟨R,S⟩.

Remark 9.2.5. The compactness and efficiency of our isogeny formulae is determined by the
choice of basis we make for the spaces generated by the forms in FR and FS . An open question
that arises from this work, therefore, is finding a solution to the following problem: let f1, . . . , fn ∈
Q(a1, . . . , ak)[x1, . . . , xm] be a basis of polynomials defined over a function field. Find a “nice”
basis g1, . . . , gn where g1, . . . , gn are Q(a1, . . . , ak)-linear combinations of the fi.

9.3 Explicit (3, 3)-isogenies on fast Kummers

We now specialise the discussion in Section 9.2 to N = 3 to construct (3, 3)-isogenies between fast
Kummer surfaces.

Let J be the Jacobian of a genus-2 curve C defined over k. Suppose we have a (3, 3)-subgroup
of J [3], which induces an isogeny φ on the corresponding fast Kummer surface K = J /{±1} with
kernel G = ⟨R,S⟩ for some R,S ∈ K[3] (i.e., G is the image of the (3, 3)-subgroup in K).

Exploiting the fact that φ is an isogeny of fast Kummer surfaces, we obtain the following
lemma, demonstrating that it is determined by five k-rational functions in the coordinates of
0K = (a : b : c : d), R and S.

4This has since been proved in follow-up joint work with Flynn [94].

179

Lemma 9.3.1. Let R and S be distinct 3-torsion points on K generating a (3, 3)-subgroup G ⊂
K[3], and set 0K = (a : b : c : d). The (3, 3)-isogeny of fast Kummer surfaces φ : K → K′ generated
by kernel G is in the form

(X1 : X2 : X3 : X4) 7−→ (φ1(X1, X2, X3, X4) : · · · : φ4(X1, X2, X3, X4)) ,

where

φ1(X1, X2, X3, X4) = X1

(
c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X

2
4

)
+ c5X2X3X4 ,

φ2(X1, X2, X3, X4) = X2

(
c2X

2
1 + c1X

2
2 + c4X

2
3 + c3X

2
4

)
+ c5X1X3X4 ,

φ3(X1, X2, X3, X4) = X3

(
c3X

2
1 + c4X

2
2 + c1X

2
3 + c2X

2
4

)
+ c5X1X2X4 ,

φ4(X1, X2, X3, X4) = X4

(
c4X

2
1 + c3X

2
2 + c2X

2
3 + c1X

2
4

)
+ c5X1X2X3 ,

with ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4].

Proof. By Lemma 9.2.4, the isogeny φ is given by cubic forms. That is, φ is defined by polynomials

φi = ci,1X
3
1 + ci,2X1X

2
2 + ci,3X1X

2
3 + ci,4X1X

2
4 + ci,5X2X3X4

+ ci,6X2X
2
1 + ci,7X

3
2 + ci,8X2X

2
3 + ci,9X2X

2
4 + ci,10X1X3X4

+ ci,11X3X
2
1 + ci,12X3X

2
2 + ci,13X

3
3 + ci,14X3X

2
4 + ci,15X1X2X4

+ ci,16X4X
2
1 + ci,17X4X

2
2 + ci,18X4X

2
3 + ci,19X

3
4 + ci,20X1X2X3 ,

where ci,j are k-rational functions in the coordinates of 0K, R, and S for 1 ≤ i ≤ 4 and 1 ≤ j ≤
20. We are looking for an isogeny of fast Kummer surfaces in the sense of Definition 9.2.3, and
compatibility with the translation-by-2-torsion maps forces

σ′
i((φ1 : φ2 : φ3 : φ4)) = φ(σi(X1 : X2 : X3 : X4)),(9.5)

for all 1 ≤ i ≤ 15. Here, σi is the action of Ti ∈ K[2], and similarly σ′
i is the action of T ′

i ∈ K′[2]

(as defined in Section 9.1.3). Equation (9.5) gives rise to relations between the coefficients of the
cubic monomials, from which we deduce that φ is of the form as in the statement of the lemma.
See section4/lemma-4_1.m in the code accompanying this paper. Clearing denominators (as our
Kummer surfaces lie in P3), we obtain the ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4].

By Lemma 9.3.1, to determine explicit formulae for the (3, 3)-isogeny φ generated by kernel
G = ⟨R,S⟩ ⊂ K, it suffices to determine the coefficients c1, . . . , c5. We follow the method given
in Section 9.2 and compute the G-invariant cubic forms. Define

BRij(X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4;R),

BSij(X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4;S).

180

By Lemma 9.2.4, the cubic forms invariant under translation by R and S are given by

FRijk := XiB
R
jk +XjB

R
ki +XkB

R
ij ,

FSijk := XiB
S
jk +XjB

S
ki +XkB

S
ij ,

respectively, where 1 ≤ i, j, k ≤ 4. Let FR = {FRijk}1≤i,j,k≤4 and similarly define FS . The cubic
forms in FR and FS each generate a space of dimension 8, for which we choose a basis

{FR111, FR234, FR222, FR134, FR333, FR124, FR444, FR123},

and similarly for FS . These spaces will intersect in a space of dimension 4, which will give a
description of the (3, 3)-isogeny. We compute a basis

f1 := z1F
R
111 + z2F

R
234 , f2 := z3F

R
222 + z4F

R
134 ,

f3 := z5F
R
333 + z6F

R
124 , f4 := z7F

R
444 + z8F

R
123

for the intersection, with z1, . . . , z8 ∈ k such that there exist w1, . . . , w8 ∈ k with

f1 = w1F
S
111 + w2F

S
234 , f2 = w3F

S
222 + w4F

S
134 ,

f3 = w5F
S
333 + w6F

S
124 , f4 = w7F

S
444 + w8F

S
123 .

From this, we obtain a (3, 3)-isogeny ψ = (f1 : f2 : f3 : f4) : K → K̃. To move K̃ to the correct
form, we first define

D1 := (ab− cd)(ab+ cd), D2 := (ac− bd)(ac+ bd), D3 := (ad− bc)(ad+ bc).

Let Dij := Di ·Dj . For a point P = (x1 : x2 : x3 : x4), we define

γ(P) := (D23(x1x2ab− x3x4cd) +D13(x1x3ac− x2x4bd) +D12(x1x4ad− x2x3bc)),

and hi(P) as the coordinates of (H ◦ S)(P), for i = 1, 2, 3, 4. Applying a linear transformation A
to K̃, where A is defined as

A :=

1/α1 0 0 0

0 2/α2 0 0

0 0 2/α1 0

0 0 0 2/(3α2)

and where

α1 := D3(γ(R)(s4s3ab− s1s2cd)− γ(S)(r4r3ab− r1r2cd)),

α2 := D1(γ(R)(s2s3ad− s1s4bc)− γ(S)(r2r3ad− r1r4bc)),

we get a simple and efficiently computable expression for our (3, 3)-isogeny φ := A(f1, f2, f3, f4)
T ,

181

whose image is in the desired form. The formulæ for the intersection and linear transformation
can be found and verified in the file section4/linear-transform.m in the accompanying code.

9.3.1 Explicit formulae for (3, 3)-isogenies

We now give the explicit formulae for the isogeny φ : K → K′ generated by kernel G = ⟨R,S⟩. Re-
call from Lemma 9.3.1 that it suffices to give the explicit formulæ for the coefficients
ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4] for i ∈ {1, 2, 3, 4, 5}. We set

β1 := D23

(
γ(R) · (s3s4ab− s1s2cd)− γ(S) · (r3r4ab− r1r2cd)

)
,

β2 := h1(R) · h2(S)− h2(R) · h1(S).

Then, maintaining the notation above, we find

c1 = 2β1h1(R)h1(S),

c2 = β1
(
h1(R)h2(S) + h2(R)h1(S)

)
+ β2

(
γ(R)(s3s4ab− s1s2cd) + γ(S)(r3r4ab− r1r2cd)

)
D23,

c3 = β1
(
h1(R)h3(S) + h3(R)h1(S)

)
+ β2

(
γ(R)(s2s4ac− s1s3bd) + γ(S)(r2r4ac− r1r3bd)

)
D13,

c4 = β1
(
h1(R)h4(S) + h4(R)h1(S)

)
+ β2

(
γ(R)(s2s3ad− s1s4bc) + γ(S)(r2r3ad− r1r4bc)

)
D12,

c5 = 2β2γ(S)γ(R).

Note that the c1, . . . , c5 are symmetric in R and S, as one would expect. Indeed, our formulæ should
not depend on whether we evaluate the coefficients at the coordinates of 0K, R, S or 0K, S,R.

Remark 9.3.2. The (3, 3)-isogeny is defined over the field of definition of the fundamental con-
stants a, b, c, d of K and the kernel generators R,S (rather than the subgroup ⟨R,S⟩).

9.3.2 Evaluating points under the (3, 3)-isogeny

Consider the (3, 3)-isogeny φ : K → K′ and assume the coefficients c1, . . . , c5 have been computed.
Given a point P = (x1 : x2 : x3 : x4) ∈ K, the image φ(P) = (x′1 : x

′
2 : x

′
3 : x

′
4) is given by

x′1 := x1(c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4) + c5x2x3x4,

x′2 := x2(c2x
2
1 + c1x

2
2 + c4x

2
3 + c3x

2
4) + c5x1x3x4,

x′3 := x3(c3x
2
1 + c4x

2
2 + c1x

2
3 + c2x

2
4) + c5x1x2x4,

x′4 := x4(c4x
2
1 + c3x

2
2 + c2x

2
3 + c1x

2
4) + c5x1x2x3.

The fundamental theta constants of the image surface K′ can be computed in the same way, i.e.,
as φ((a : b : c : d)). Via Equation (9.2), we can then compute the constants E′, F ′, G′, H ′ defining
the equation of the surface K′.

182

9.3.3 Implementation

We implemented (3, 3)-isogeny evaluation using the formulæ above. We give explicit operation
counts for k = Fq, which will be necessary for our cryptographic application in Section 9.5. To
optimise the computation, we implement the following algorithms:

1. TriplingConstantsFromThetas: given fundamental theta constants (a : b : c : d), compute tripling
constants consisting of:

• their inverses (1/a : 1/b : 1/c : 1/d);

• their squares (a2 : b2 : c2 : d2);

• squared dual theta constants (A2 : B2 : C2 : D2); and

• their inverses (1/A2 : 1/B2 : 1/C2 : 1/D2).

For k = Fq, this requires 12M, 4S, and 6a.

2. Compute33Coefficients: given coordinates of R,S and the tripling constants, compute the
coefficients c1, . . . , c5 defining the (3, 3)-isogeny. When k = Fq, this requires 76M, 8S, and
97a.

3. Isogeny33Evaluate: given the coefficients c1, . . . , c5, computes the image of a point P ∈ K
under the corresponding (3, 3)-isogeny (as explained in Section 9.3.2). For k = Fq, this
requires 26M, 4S and 16a.

4. ComputeImageThetas: given coefficients c1, . . . , c5 and the tripling constants, compute the
fundamental theta constants defining the image curve. For k = Fq, this requires 26M and
16a.

Details of the implementation can be found in the accompanying code.

9.3.4 A note on (5, 5)-isogenies on fast Kummers

Suppose we now have a (5, 5)-subgroup of J [5], which induces a (5, 5)-isogeny φ on the correspond-
ing fast Kummer surface K = J /{±1} with kernel G = ⟨R,S⟩ for some R,S ∈ K[5], i.e., G is the
image of the (5, 5)-subgroup in K.

Following the method in Section 9.2, we first compute the G-invariant quintic forms. Let BRi,j
and BSi,j be as before (where now R,S are the 5-torsion points), and define

B2R
ij (X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4; 2R),

B2S
ij (X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4; 2S).

By Lemma 9.2.4, and following Flynn [157], the quintic forms invariant under translation by R are

183

given by

FRijklm := XiB
R
jkB

2R
lm +XiB

R
jlB

2R
km +XiB

R
jmB

2R
kl +

XiB
R
klB

2R
jm +XiB

R
kmB

2R
jl +XiB

R
lmB

2R
jk +

XjB
R
ikB

2R
lm +XjB

R
ilB

2R
km +XjB

R
imB

2R
kl +

XjB
R
klB

2R
im +XjB

R
kmB

2R
il +XjB

R
lmB

2R
ik +

XkB
R
jiB

2R
lm +XkB

R
jlB

2R
im +XkB

R
jmB

2R
il +

XkB
R
ilB

2R
jm +XkB

R
imB

2R
jl +XkB

R
lmB

2R
ji +

XlB
R
jkB

2R
im +XlB

R
jiB

2R
km +XlB

R
jmB

2R
ki +

XlB
R
kiB

2R
jm +XlB

R
kmB

2R
ji +XlB

R
imB

2R
jk +

XmB
R
jkB

2R
li +XmB

R
jlB

2R
ki +XmB

R
jiB

2R
kl +

XmB
R
klB

2R
ji +XmB

R
kiB

2R
jl +XmB

R
liB

2R
jk ,

where 1 ≤ i, j, k, l,m ≤ 4. We similarly define FSijklm, the quintic forms invariant under translation-
by-S.

Let FR = {FRijklm} and FR = {FSijklm}. Working modulo the equation defining the Kummer
surface K, the quintic forms in FR and FS each generate a space of dimension 12, for which we
choose a basis {

FR14444, F
R
23333, F

R
23334, F

R
23344, F

R
23444, F

R
24444,

FR33333, F
R
33334, F

R
33344, F

R
33444, F

R
34444, F

R
44444

}
,

and similarly for FS . These spaces intersect in a space of dimension 4, which gives a description
of the (5, 5)-isogeny. Finding the final scaling map to put the image into the correct form is left as
future work.5

9.4 Generating (Nk, Nk)-subgroups

In the remaining two sections, we turn to building a hash function based on the (3, 3)-isogenies
derived in the previous section. The hash function will compute (3k, 3k)-isogenies as chains of
(3, 3)-isogenies, and will start each such chain by computing a (3k, 3k)-subgroup on a fast Kum-
mer surface. This section describes how such (Nk, Nk)-subgroups can be computed (for prime
number N and integer k ≥ 1) in a way that is amenable to efficient and secure cryptographic
implementations.

We do this in two steps: first, in Section 9.4.1 we show how to compute a symplectic basis for
the Nk-torsion on the Jacobian J , which we then push down to the corresponding fast Kummer
surface K = J /{±1}; and second, we use this basis to compute the generators R,S of the (Nk, Nk)-
subgroup G using the three-dimensional differential addition chain introduced in Section 9.4.2.

5This has been resolved in follow-up joint work with Flynn [94].

184

9.4.1 Generating a symplectic basis on K

We first compute a symplectic basis for the Nk-torsion on the Jacobian J of the genus-2 curve
Cλ,µ,ν corresponding to K. We compute this basis by generating Nk-torsion points on J until the
Nk-Weil pairing condition given in Definition 9.1.1 is satisfied.6 These points are then pushed
down to K via

π : J → K,

P 7→
(
CInv(0K) ◦ H ◦ C(Inv◦H◦S)(0K)S ◦ H ◦ κ

)
(P).

Here, C, H, S and Inv are the standard Kummer operations defined in Section 9.1.4 and κ : J →
KSqr maps points in Mumford coordinates on J to the squared Kummer surface KSqr as follows.
For generic points P = (x2 + u1x+ u0, v1x+ v0) ∈ J , we have

κ : (x2 + u1x+ u0, v1x+ v0) 7→ (X1 : X2 : X3 : X4)

with

X1 = a2(u0(µ− u0)(λ+ u1 + ν)− v20), X2 = b2(u0(νλ− u0)(1 + u1 + µ)− v20),

X3 = c2(u0(ν − u0)(λ+ u1 + µ)− v20), X4 = d2(u0(µλ− u0)(1 + u1 + ν)− v20).

For special points P = (x− u0, v0), the map κ is defined by first adding a point of order 2 on J .
Indeed, by adding (x− u′0, 0) ∈ J [2] (with u′0 ̸= u0) we get the point(

x2 − (u0 + u′0)x+ u0u
′
0,

v0
u0 − u′0

x− v0u
′
0

u0 − u′0

)
,

to which we can apply κ. The translation is then undone by applying the action of the corresponding
2-torsion point on KSqr. Finally, κ(0J) := (a2 : b2 : c2 : d2).

The map κ is due to Bisson, Cosset and Robert [36], while the subsequent operations that map
from KSqr to K appear in Renes and Smith [268, Section 4.3]. Note that the map π corresponds to
a (2, 2)-isogeny, which will not affect the order of the basis points if N is coprime to 2. If, however,
2 | N then one must additionally check the order of the image points on K.

Remark 9.4.1. For applications where N , k, and the domain Kummer K are fixed, the symplectic
basis for J [Nk] can be computed as part of the set-up once and for all, and the image of these
basis points (under π) can be hardcoded as system parameters. For instance, this will be the case
for our cryptographic application in Section 9.5. In these scenarios, optimising the efficiency of the
operations in this subsection is not a priority; the important goal is to optimise the efficiency of
the online part of the (Nk, Nk)-subgroup generation procedure, which amounts to optimising the
three-dimensional differential addition chain in the following subsection.

6In our implementation, we compute the Nk-Weil pairing of points on J [Nk] using MAGMA’s in-built functionality.

185

9.4.2 Three-dimensional differential addition chains

Let Q1, Q2, Q3, Q4 ∈ K be the images of a symplectic basis for J [Nk] under the map π described
above. In this subsection we show how to use this basis to compute the two generators R and S

of our (Nk, Nk)-subgroup.
As a first simplification, we restrict to (Nk, Nk)-subgroups with generators of the form

(9.6)
R = Q1 + [α]Q3 + [β]Q4,

S = Q2 + [β]Q3 + [γ]Q4,

where α, β, γ ∈ Z/NkZ. There are N3k such (Nk, Nk)-subgroups (for example, see [209, Table 1]),
and there are O(N3k−1) subgroups that we lose by imposing this restriction [209, Def. 3]. In other
words, at least half of the (Nk, Nk)-subgroups can be obtained with kernel generators of the form
in Equation (9.6), so in a cryptographic context we lose at most one bit of security by simplifying
in this manner.

The remainder of this subsection presents the 3DAC algorithm that allows us to compute the
kernel generators R and S via Equation (9.6). Our task is to define an algorithm that computes
P1 + [β]P2 + [γ]P3 for given scalars β, γ ∈ Z/NkZ and for the points P1, P2 and P3 on K. The
analogous computation on J could utilise a straightforward 3-way multi-exponentation algorithm,
but on the Kummer surface we need a three-dimensional differential addition chain. Such an
addition chain is only allowed to include the computation of the sum Q + R if the difference
±(Q−R) has already been computed at a previous stage.

Three-dimensional differential addition chains have been studied previously by Rao [263] and
more generally by Hutchinson and Karabina [185]. However, both of those works study the general
scenario whereby three scalars are in play. Viewing Equation (9.6), we see that there is no scalar
multiplication of the point P1 in our case, which allows for some convenient simplifications. More-
over, the chain due to Rao [263] is non-uniform and the chain due to Hutchinson and Karabina
[185] is not fixed length unless the input scalars are. Our algorithm 3DAC satisfies both of these
properties regardless of the input scalars, making it secure for use in cryptographic applications,
such as the hash function we present in Section 9.5. We remark that these properties would not be
necessary for a hash function involving only public data, but for other cryptographic applications
where inputs to the hash function (or, more broadly, the scalars β and γ) are secret, such as key
derivation functions, these properties are an imperative first step towards protecting the secret
data from side-channel attacks.

We derived the 3DAC chain by extending the two-dimensional differential addition chain due to
Bernstein [24], the fastest known two-dimensional differential addition chain that is fixed length
and uniform. Beyond the points P1, P2, P3 ∈ K, 3DAC also needs seven additional combinations
of sums and/or differences of these three points. We specify the full ten-tuple of inputs as

D :=
(
P1, P2, P3, P2 + P3, P2 − P3, P1 − P2, P1 − P3, [2](P2 + P3), P1 + P2 + P3, P1 − P2 − P3

)
,

for points P1, P2, P3 ∈ K. In line with Remark 9.4.1, these additional sums and differences can be
(pre)computed on J and their image in K specified as part of the system parameters.

186

The three main subroutines used in 3DAC are DBLTHRICEADD, an encoding algorithm ENCODE

and an indexing algorithm IND. The algorithm DBLTHRICEADD is defined to compute the map-
ping

(
P,Q, P −Q,R, S,R− S, T, U, T − U

)
7→
(
[2]P, P +Q,R+ S, T + U

)
,

for points P,Q,R, S, T, U ∈ K, using one pseudo-doubling and three pseudo-additions on the
Kummer surface K.

The encoding algorithm ENCODE takes as input two ℓ-bit scalars β, γ ∈ Z/3kZ and outputs a
single bit b and four (ℓ−1)-bit scalars bi for i = 0, 1, 2, 3. The bit b determines one of two possible
input combinations that is fed into a differential addition that kickstarts the chain (see Step 3
of Algorithm 9.3), after which the j-th bits (for j = 1, . . . , ℓ) of each of the four bi determine one of
16 input permutations that is fed into the DBLTHRICEADD routine (see Step 10 of Algorithm 9.3).

Algorithm 9.1 ENCODE(β, γ):

Input: two ℓ-bit scalars β = (β[ℓ− 1], . . . , β[0]) and γ = (γ[ℓ− 1], . . . , γ[0])
Output: a bit b ∈ {0, 1}, and four (ℓ− 1)-bit scalars (b0, b1, b2, b3)

1: b← β[1]
2: for i = 1 to ℓ− 1 do
3: b1[i]← β[i]⊕ β[i+ 1]
4: b0[i]← b1[i]⊕ γ[i]⊕ γ[i+ 1]
5: b2[i]← β[i+ 1]⊕ γ[i+ 1]
6: b3[i]← b
7: b← b1[i]⊕ (b0[i]⊕ 1)⊗ b
8: end for
9: return b, (b0, b1, b2, b3)

The indexing algorithm IND is used to choose one of four points as the last input to the
DBLTHRICEADD algorithm.

Algorithm 9.2 IND(I):

Input: a 6-tuple of integers I = (I1, . . . , I6)
Output: an integer index ind ∈ {1, 2, 3, 4}

1: switch ([I3 − I1, I4 − I2])
2: case [−1,−1]: ind← 1
3: case [1, 1]: ind← 2
4: case [1,−1]: ind← 3
5: case [−1, 1]: ind← 4
6: end switch
7: return ind

The full algorithm 3DAC is specified in Algorithm 9.3. Given the tuple D above, the two scalars
β, γ ∈ Z/NkZ, the length ℓ of the chain (i.e., the bitlength of Nk), the fundamental theta constants
0K of the fast Kummer surface K that we are working on, our 3DAC algorithm computes the point
P1 + [β]P2 + [γ]P3 on K using 3ℓ− 2 pseudo-additions and ℓ− 1 pseudo-doublings on K.

187

Algorithm 9.3 3DAC(D, β, γ, ℓ, 0K):

Input: Scalars β, γ ∈ Z/3kZ, the length of chain ℓ, fundamental theta constants 0K, and a tuple
D of points on K. Let Di be the i-th element in D.
Output: P1 + [β]P2 + [γ]P3 where P1, P2, P3 are D1,D2,D3, respectively.

1: initialise P ← (D4,D8,D4,D9), D ← (D2,D3,D4,D5), ∆← (D1,D10,D6,D7)
2: initialise I ← (1, 1, 2, 2, 1, 1)
3: b, (b0, b1, b2, b3)← ENCODE(β, γ)
4: if b = 1 then
5: (P3, I6)← ((P3, D2, D1), I6 + 1)
6: else
7: (P3, I5)← ((P3, D1, D2), I5 + 1)
8: end if
9: for i = 1 to ℓ− 1 do

10: switch (b0[i], b1[i], b2[i], b3[i])
11: case (0, 0, 0, 0): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D3, P3, P2, D2, P2, P4,∆IND(I))
12: case (0, 0, 0, 1): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D3, P3, P2, D1, P2, P4,∆IND(I))
13: case (0, 0, 1, 0): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D4, P3, P2, D2, P2, P4,∆IND(I))
14: case (0, 0, 1, 1): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D4, P3, P2, D1, P2, P4,∆IND(I))
15: case (0, 1, 0, 0): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D3, P3, P1, D2, P1, P4,∆IND(I))
16: case (0, 1, 0, 1): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D3, P3, P1, D1, P1, P4,∆IND(I))
17: case (0, 1, 1, 0): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D4, P3, P1, D2, P1, P4,∆IND(I))
18: case (0, 1, 1, 1): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D4, P3, P1, D1, P1, P4,∆IND(I))
19: case (1, 0, 0, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D2, P1, P2, D3, P3, P4,∆IND(I))
20: case (1, 0, 0, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D1, P1, P2, D3, P3, P4,∆IND(I))
21: case (1, 0, 1, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D2, P1, P2, D4, P3, P4,∆IND(I))
22: case (1, 0, 1, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D1, P1, P2, D4, P3, P4,∆IND(I))
23: case (1, 1, 0, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D2, P1, P2, D3, P3, P4,∆IND(I))
24: case (1, 1, 0, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D1, P1, P2, D3, P3, P4,∆IND(I))
25: case (1, 1, 1, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D2, P1, P2, D4, P3, P4,∆IND(I))
26: case (1, 1, 1, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D1, P1, P2, D4, P3, P4,∆IND(I))
27: end switch
28: end for
29: return P4

188

9.5 A hash function from (3, 3)-isogenies

Isogenies between superspecial Jacobians of genus-2 curves have been proposed for use in post-
quantum isogeny-based cryptography (e.g., [72, 159]). We follow suit and henceforth restrict
our attention superspecial Jacobians defined over k = Fp. Recall from Section 4.1 that every
superspecial J /Fp is Fp-isomorphic to a Jacobian defined over Fp2 . Similarly, the corresponding
superspecial Kummer surface K/Fp is Fp-isomorphic to a Kummer surface with model defined over
Fp2 .

As an application to exhibit our algorithms, we construct a fundamental cryptographic prim-
itive: a hash function. The first isogeny-based hash function was introduced by Charles, Goren
and Lauter who use isogenies between supersingular elliptic curves [76]. The use of higher di-
mensional isogenies between superspecial Jacobians of genus-2 curves to construct a variant of
the Charles–Goren–Lauter (CGL) hash function was previously explored by Castryck, Decru and
Smith [72] using (2, 2)-isogenies. They argue that although the computation of higher dimensional
isogenies is more expensive, breaking the security of the hash function requires Õ(p3/2) time, rather
than Õ(p1/2) time as in the CGL hash function. Therefore, smaller parameters can be used to
obtain the same security. Following this, Castryck and Decru [70] use multiradical formulae for
(3, 3)-isogenies to construct such a hash function and obtain an asymptotic speed-up of around
a factor of 9. Later work by Decru and Kunzweiler [130] construct a hash function using (3, 3)-
isogenies between general Kummer surfaces by improving on the formulae given by Bruin, Flynn
and Testa [58].

In this section, we describe a variant of the CGL hash function [76], called KuHash, that uses
the formulae introduced in Section 9.3 to compute chains of (3, 3)-isogenies between fast Kummer
surfaces. We obtain a speed-up of around 8 – 9x, and around 32 – 34x compared to the Castryck–
Decru and Decru–Kunzweiler hash functions, respectively, for security levels λ = 128, 192 and
256.

9.5.1 Chains of (3, 3)-isogenies

We first present the Isogeny33Chain routine for computing chains of (3, 3)-isogenies. Though we
use it as a building block for a hash function, we note that it can also be used in a variety of
cryptographic applications. In particular, we have been careful to ensure that each component of
the algorithm is amenable to constant-time cryptographic software.

Tripling algorithm. We start by presenting TPL, the algorithm to compute [3]P from a point
P ∈ K and the associated tripling constants (as defined in Section 9.3.3). This algorithm requires
26M, 12S and 32a.

Naïve strategies. Given a (3k, 3k)-subgroup G = ⟨R,S⟩ ⊂ K[3k], we use TPL and the algorithms
from Section 9.3.3 to compute an isogeny with kernel ⟨R,S⟩ as a chain of (3, 3)-isogenies of length
k. A naïve way of doing so is the following. Set P0 := R, Q0 := S and K0 := K, and then execute
the following four steps for i = 1 to k:

1. Compute the tripling constants on Ki−1 using TriplingConstantsFromThetas

189

Algorithm 9.4 TPL(P, TC):

Input: Point P ∈ K and tripling constants TC (with i-th entry denoted TCi)
Output: Point Q ∈ K where Q = [3]P .

1: R← S(P)
2: R← H(R)
3: Q← S(R)
4: Q← CTC5(Q)
5: Q← H(Q)
6: Q← CTC4(Q)
7: Q← S(Q)
8: Q← H(Q)
9: S ← CTC5(R)

10: Q← CS(Q)
11: Q← H(Q)
12: Q← CI(P)(Q)
13: return Q

2. Compute 3-torsion points (Pi, Qi) := (3k−iR, 3k−iS) using k− i repeated applications of TPL
on R and S.

3. Compute the (3, 3)-isogeny φi : Ki−1 → Ki with kernel ⟨Pi, Qi⟩, and the images of Pi−1, Qi−1

under this isogeny using Compute33Coefficients and Isogeny33Evaluate.

4. Compute the theta constants of the image Ki of φi using ComputeImageThetas.

The (3k, 3k)-isogeny with kernel G will be given by φk ◦ · · · ◦ φ1 : K0 → Kk.

Optimal strategies. A more efficient way to compute isogeny chains is to use optimal strate-
gies [123]. These allow us to reduce the number of executions of TPL needed to compute the kernel
at each step in the chain by storing intermediate points obtained during the triplings and pushing
them through each isogeny. In our case, the cost of tripling is around 1.1x the cost of computing
the image of a point under the isogeny, and so we shift the cost in this way to obtain the strategies
(see [123] for further details). We give this algorithm in detail in Algorithm 9.5, and note that
invoking the optimal strategies results in a 3.7–6.6x reduction of the cost to compute a chain of
(3, 3)-isogenies for the set of parameters we specify in Section 9.5.3.

9.5.2 A cryptographic hash function

We are now ready to present the hash function KuHash that uses chains of (3, 3)-isogenies between
fast Kummer surfaces. For a fixed security parameter λ and working over characteristic p ≈ 2λ,
the hash function parses the message into three scalars α, β, γ ∈ Z/3kZ which are fed into the
3DAC algorithm to compute a (3k, 3k)-subgroup G = ⟨R,S⟩. This is then used to compute the
corresponding (3k, 3k)-isogeny φ : K → K′, and the output of the hash function is the fundamental
theta constants of the image surface K′.

To optimise our hash function, we want to ensure that the (3k, 3k)-isogeny is Fp2-rational.
Given a security parameter λ, we choose a suitably sized prime p = 16f ·3k−1 ≈ 2λ (the fact that

190

Algorithm 9.5 Isogeny33Chain(k, 0K, R, S, strategy):

Input: Fundamental theta constants 0K = (a : b : c : d) defining Kummer surface K, generators
R,S ∈ K of (3k, 3k)-subgroup for k ≥ 1, and optimal strategy strategy.
Output: Fundamental theta constants defining image Kummer surface K′ of (3k, 3k)-isogeny
φ : K → K′ with kerφ = ⟨R,S⟩.

1: for e = k − 1 to 1 do
2: P,Q = R,S
3: pts = []
4: inds = []
5: i← 0
6: TC← TriplingConstantsFromThetas(0K)
7: while i < k − e do
8: Append [R,S] to pts

9: Append i to inds

10: m← strategy[k − i− e+ 1]
11: for j = 1 to m do
12: R← TPL(R, TC)
13: S ← TPL(S, TC)
14: end for
15: i← i+m
16: end while
17: cs← Compute33Coefficients(P,Q, TC)
18: 0K ← ComputingImageThetas(cs)
19: for [P1, P2] in pts do
20: P1 ← Isogeny33Evaluate(P1, cs)
21: P2 ← Isogeny33Evaluate(P2, cs)
22: end for
23: if pts not empty then
24: [R,S]← pts[−1]
25: i← inds[−1]
26: Remove last element from pts and inds
27: end if
28: end for
29: TC← TriplingConstantsFromThetas(0K)
30: cs← Compute33Coefficients(R,S, TC)
31: 0K ← ComputingImageThetas(cs)
32: return 0K

191

16 | p+1 ensures rational 2-torsion), where f is a small cofactor, and take a small pseudo-random
walk from the superspecial Jacobian of the curve C0 : y2 = x6+1 to arrive at our starting Jacobian
J = Jac(C). In our implementation, we used MAGMA’s inbuilt Richelot isogeny routine to take 20
(2, 2)-isogenies away from C0. Since J (Fp2) ∼= (Z/(p + 1)Z)4, the Rosenhain invariants of C are
all rational in Fp2 , and we use these to compute 0K = (a : b : c : d), i.e., the fundamental theta
constants of the starting Kummer surface K = J /{±1}, where a, b, c, d ∈ Fp2 . Using the methods
described in Section 9.4.1, we compute a symplectic basis for J [3k], which is pushed down to our
starting fast Kummer surface K via π : J → K together with the auxiliary sums and differences
defined in Section 9.4.2 to obtain the two tuples of points DR and DS . The setup routine outputs
gens = {DR, DS} and data = {k, ⌈λ/ log(3)⌉, 0K}.

The hash function takes as input data, gens and a message msg = (α, β, γ), where α, β, γ ∈
Z/3kZ. In practice, the input message msg to the hash function would be a bit string, which would
then be parsed into the scalars α, β, γ. The output of the hash function is a tuple of elements
Fp2 , namely the fundamental theta constants of the image Kummer surface K′ under the (3k, 3k)-
isogeny defined by scalars (α, β, γ). The output is of size 8 log(p) without normalising the theta
constants (a′, b′, c′, d′), and of size 6 log(p) with normalisation (a′/d′, b′/d′, c′/d′), which comes at
a cost of one inversion and 3M. We fully specify KuHash in Algorithm 9.6.

We remark that, as the message must be parsed into three scalars lying in Z/3kZ, our hash
function requires an input message of length 3k log(3) bits. To allow for arbitrary length messages,
after each (3k, 3k)-isogeny is computed, we could, for example, sample a new symplectic basis on
the image Kummer surface following Kunzweiler, Ti, and Weitkämper [210, Algorithm 1]. However,
we emphasize that our main objective in presenting the hash function KuHash is to benchmark our
algorithm Isogeny33Chain for computing chains of (3, 3)-isogenies against others in the literature.
We therefore restrict our implementation and experiments to messages of length 3k log(3).

Algorithm 9.6 KuHash(msg, data, gens)

Input: A message msg, auxiliary data data and generators gens of K[3k].
Output: Fundamental theta constants (a′, b′, c′, d′) of image Kummer surface K′

1: Parse msg as α, β, γ.
2: Parse data as k, ℓ,OK.
3: Parse gens as two sets DR, DS (see Section 9.4.2).
4: R← 3DAC(DR, α, β, ℓ, 0K)
5: S ← 3DAC(DS , β, γ, ℓ, 0K)
6: (a′ : b : c′ : d′)← Isogeny33Chain(k, 0K, R, S)
7: return (a′, b′, c′, d′)

9.5.3 Implementation

We implement KuHash and give parameters for security levels λ = 128, 192, and 256.

Security. Let λ be the security parameter and p ≈ 2λ. We follow the discussion in [72, §7.4]
to determine the security of the hash function KuHash. In particular, the security of our hash
function is not affected by taking N = 3 rather than N = 2, and as a result the security of our

192

hash function relies on similar problems, namely Problem 9.5.1 and Problem 9.5.2 below.

Problem 9.5.1. Given two superspecial genus-2 curves C1, C2 defined over Fp2 find a (3k, 3k)-
isogeny between Jac(C1) and Jac(C2).

Problem 9.5.2. Given a superspecial genus-2 curve C1 defined over Fp2 , find

• a curve C2 and a (3k, 3k)-isogeny Jac(C1)→ Jac(C2),

• a curve C′2 and a (3k
′
, 3k

′
)-isogeny Jac(C1)→ Jac(C′2),

such that Jac(C2) and Jac(C′2) are Fp-isomorphic. Here, we can have k = k′, but the kernels of the
corresponding isogenies must be different.

Previous works take the general Pollard-ρ attack to be the best classical attack against these
problems, which runs in Õ(p3/2). We take a more conservative approach and consider the Costello–
Smith algorithm [107] to be the best classical attack, which runs in Õ(p). This attack is described
in detail in Section 4.3.2 of Part I of this thesis, and its concrete security is the focus of Chapter 8.
We further recall that the best quantum attack is also due to Costello and Smith, and is based
on Grover’s claw-finding algorithm running in Õ(p1/2). Considering these attacks, we obtain the
following parameters:

• λ = 128 : p = 5 · 24 · 3k − 1 with k = 75;

• λ = 192 : p = 37 · 24 · 3k − 1 with k = 115;

• λ = 256 : p = 11 · 24 · 3k − 1 with k = 154.

Cost Metric. To benchmark KuHash, we count Fp-operations. Indeed, our implementation in
Python/SageMath will call underlying Fp-operations to compute Fp2-operations. For simplicity,
our cost metric will take M = S and ignore a, as additions have only a very minor impact on
performance. Note that it is relatively straightforward to convert this cost into a more fine-grained
metric (e.g., bit operations, cycle counts, etc.).

Results. We ran KuHash in SageMath version 10.1 using Python 3.11.1 and record the cost, as
per the cost metric above, averaging over 100 random inputs for each prime size. We present the
results in Table 9.1. Taking the Fp2 -operation count from [130, §3.2] and using our cost metric,
the cost of computing the coefficients of Decru and Kunzweiler’s (3, 3)-isogeny is 6702 (assuming 1
Fp2-multiplication is equivalent to 3 Fp-multiplications). We use this to obtain a lower bound on
the cost of the Decru–Kunzweiler hash function. Though this is a lower bound, we see in Table 9.1
that the cost already exceeds the total cost of KuHash.

The codebase for the other (3, 3)-isogeny CGL hash variant by Castryck and Decru [70] uses
Gröbner basis calculations at each step of the (3, 3)-isogeny chain, which is not realistic to convert
to a fixed number of Fp-operations. Therefore, for fair comparison, we ran all three hash functions
in MAGMA V2.25-6 on Intel(R) Core™ i7-1065G7 CPU @ 1.30GHx × 8 with 15.4 GiB memory, and
record the time taken to run the hash functions for the different λ in Table 9.1. We again average
over 100 random inputs for each prime size.

193

λ Message Length Cost Time (s) Time per input bit (ms)

KuHash

128 225 log(3) 177956 0.18 0.50

192 345 log(3) 286636 0.29 0.53

256 462 log(3) 396942 0.53 0.72

[130]

128 240 log(3) > 536160 5.99 15.75

171 315 log(3) > 703710 10.16 20.35

256 477 log(3) > 1065618 18.29 24.19

[70]

128 357 - 1.51 4.23

171 547 - 2.82 5.16

256 732 - 4.81 6.57

Table 9.1: Comparison of cost using cost metric and time taken to run KuHash and hash functions in [70]
and [130]. All results are averaged over 100 runs with random inputs. We remark that the cost of KuHash
is the same for all runs because it is uniform.

Comparing the time taken per input bit for λ = 128 and 256, we observe a speed-up of around 8

– 9x compared to the Castryck–Decru hash function, and around 32 – 34x compared to the Decru–
Kunzweiler hash function. For a precise comparison between implementations, however, exact
Fp-operation counts of the Castryck–Decru and Decru–Kunzweiler hash functions are required.
We note that an advantage of the algorithms developed with our approach is that we do not rely
on in-built functionality and all our algorithms are uniform. Therefore, we are able to give precise
Fp-operation counts for KuHash.

Remark 9.5.3. Since the work in this chapter was finalised, Kunzweiler, Maino, Moriya, Petit,
Pope, Robert, Stopar, and Ti [208] give explicit descriptions for radical 2-isogenies in dimensions
one, two, and three using theta coordinates. As an application, these formulæ are used to construct
different versions of the CGL hash function [76], with an accompanying Rust implementation. In
light of this new research, it would be interesting to understand how KuHash compares to the
various hash functions presented in [208].

194

Part IV
Accelerating SQIsign

195

Overview

In recent years, another type of post-quantum cryptography based on lattices has developed practi-
cal digital signature schemes that will be standardized by NIST [140, 161]. Lattice-based signatures
provide fast signing and verification, but have larger key and signature sizes than were previously
acceptable in pre-quantum signatures. For applications where the communication cost must re-
main as low as possible, lattice-based schemes may not be a viable option. Due to this, NIST is
looking to standardise other signature schemes with desirable properties such as smaller combined
public key and signature sizes for a smooth transition to a post-quantum world [310].

In the final part of this thesis, we focus on a potential solution to this: SQIsign [125]. SQIsign
is the only isogeny-based candidate submitted to NIST’s new call for signatures, and boasts the
smallest combined size of the signature and the public key, comparable to those in pre-quantum
elliptic curve signatures [193, 195]. Its main disadvantage, however, is its relative inefficiency
compared to lattice-based schemes. We focus on accelerating the signing and verification routines
in SQIsign. In Chapter 10, we present a novel method for finding SQIsign-friendly parameters,
suited for obtaining faster signing without a large degradation in verification time. In this chapter,
we assume that elliptic curve operations take place over Fp2 . By adapting the signing procedure
to allow for arithmetic over an extension field of Fp2 , in Chapter 11 we present a new variant of
SQIsign called AprèsSQI, which aims to maximise the performance of verification. Throughout this
part of the thesis, we focus on instantiations of SQIsign that provide NIST Level I, III and IV
security, as defined in Table 1 in the introduction.

196

Chapter 10

Cryptographic Smooth Neighbours

SQIsign parameters must satisfy many requirements in order for it to be secure and practical.
In this chapter, we present and optimise a new method for finding SQIsign-friendly primes. The
primes p we present are such that p2 − 1 is smooth, however only divisible by moderately sized
powers of 2 and 3. As such, they are more suited towards fast signing, where the smoothness
bound has the largest impact. This chapter is based on the paper

Cryptographic Smooth Neighbors

published at ASIACRYPT 2023 [60], which is joint work with Giacomo Bruno, Craig Costello,
Jonathan Komada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner. Apart from
minor editorial edits and merging the appendix into the main body, the chapter presents the paper
as published.

In light of recent work. We briefly remark on the contributions of this work in light of other
work that has been made public since its publication. New high-dimensional variants of SQIsign,
namely SQIsignHD [116] and SQIsign2D [17, 142, 247], have removed the restrictions on the primes
needed to instantiate the signature scheme. Indeed, they use primes of the form p = 2ef − 1,
where e, f ∈ N. However, even with these new higher-dimensional techniques available, the recent
public key encryption (PKE) scheme constructed with the POKE framework [16] requires very
special primes. More specifically, it requires primes p ≈ 22λ such that 2eT | p2 − 1 for e ∈ N,
T is some smooth odd integer, and p − 1 has a prime divisor x ≈ 2λ/2. Recent joint work with
Eriksen, Meyer, and Rodríguez-Henríquez [277] shows that similar prime-finding techniques can
find POKE-friendly primes. This highlights that these new variants do not make finding special
primes obsolete. Indeed, they were first explored in the context of B-SIDH, before being applied
to SQIsign. Further to this, the picture in isogeny-based cryptography changes quickly with new
developments. As such, we may see improvements that lead us back to one-dimensional variants,
or even two-dimensional variants that require similar prime shapes.

Introduction

In recent years the tantalising problem of finding two large, consecutive, smooth integers has
emerged in the context of instantiating efficient isogeny-based public key cryptosystems. Though
the problem was initially motivated in the context of key exchange [99], a wave of polynomial time
attacks [67, 227, 271] has broken the isogeny-based key exchange scheme SIDH [123], leaving post-
quantum signatures as the most compelling cryptographic application of isogenies at present. In
terms of practical potential, the leading isogeny-based signature scheme is SQIsign [125]; it boasts

197

the smallest public keys and signatures of all post-quantum signature schemes, at the price of a
signing algorithm that is orders of magnitude slower than its post-quantum counterparts. Finding
secure parameters for SQIsign is related to the twin smooth problem mentioned above. Indeed,
SQIsign is instantiated over large primes p such that p2 − 1 is divisible by a large, B-smooth
factor. If, for example, we find B-smooth twins r and r + 1 whose sum is a prime p = 2r + 1,
then p2 − 1 is immediately B-smooth. A large contributing factor to the overall efficiency of the
protocol is the smoothness bound, B, of the rational torsion used in isogeny computations. This
bound corresponds to the degree of the largest prime-degree isogeny computed in the protocol, for
which the fastest algorithm runs in Õ(

√
B) field operations [27]. Part of the reason for SQIsign’s

performance drawback is that the problem of finding parameters with small B is difficult: the
fastest implementation to date targets security comparable to NIST Level I [309, §4.A] and has
B = 3923 [126]. Additionally, methods for finding efficient SQIsign parameters have to date not
been able to obtain suitable primes reaching NIST Level III and V security.

The CHM algorithm. In this work we introduce new ways of finding large twin smooth instances
based on the Conrey–Holmstrom–McLaughlin (CHM) “Smooth neighbors” algorithm [86]. For a
fixed smoothness bound B, the CHM algorithm starts with the set of integers S = {1, 2, . . . , B−1}
representing the smooth neighbours (1, 2), (2, 3), . . . , (B − 1, B), and recursively grows this set by
constructing new twin smooth integers from unordered pairs in S × S until a full pass over all
such pairs finds no new twins, at which point the algorithm terminates. Although the CHM
algorithm is not guaranteed to find the set of all B-smooth twins, for moderate values of B it
converges with the set S containing almost all such twins. The crucial advantage is that, unlike
the algorithm of Lehmer [214] that exhaustively solves 2π(B) Pell equations to guarantee the full set
of B-smooth twins, the CHM algorithm terminates much more rapidly. For example, in 2011 Luca
and Najman [225] used Lehmer’s approach with B = 100 to compute the full set of 13,374 twin
smooths in 15 days (on a quad-core 2.66 GHz processor) by solving 2π(B) = 225 Pell equations, the
solutions of which can have as many as 1010

6

decimal digits. The largest pair of 100-smooth twins
they found were the 58-bit integers

166055401586083680 = 25 · 33 · 5 · 113 · 23 · 43 · 59 · 67 · 83 · 89, and

166055401586083681 = 72 · 1710 · 412.

In 2012, Conrey, Holmstrom and McLaughlin ran their algorithm on a similar machine to find
13,333 (i.e. all but 41) of these twins in 20 minutes [86]. Subsequently, they set B = 200 and found
a list of 346,192 twin smooths in about 2 weeks, the largest of which were the 79-bit integers

589864439608716991201560 = 23 · 33 · 5 · 72 · 112 · 17 · 31 · 592 · 83 · 1392

· 173 · 181, and

589864439608716991201561 = 132 · 1132 · 1272 · 1372 · 1512 · 1992.

Exhausting the full set of 200-smooth twins would have required solving 2π(200) = 246 Pell equa-
tions, which is pushing the limit of what is currently computationally feasible. The largest run of
Lehmer’s algorithm reported in the literature used B = 113 [99, §5.3], which required solving 230

198

Pell equations and a significant parallelised computation that ran over several weeks. The largest
set of 113-smooth twins found during that computation were the 75-bit integers

19316158377073923834000 = 24 · 36 · 53 · 7 · 232 · 29 · 47 · 59 · 61 · 73 · 97 · 103,

19316158377073923834001 = 132 · 312 · 372 · 434 · 714.

Remark 10.0.1. The above examples illustrate some important phenomena that are worth point-
ing out before we move forward. Observe that, in the first and third examples, the largest prime
not exceeding B is not found in the factors of the largest twins. The largest 89-smooth twins are
the same as the largest 97-smooth twins, and the largest 103-smooth twins are the same as the
largest 113-smooth twins. In other words, increasing B to include more primes necessarily increases
the size of the set of B-smooth twins, but it does not mean we will find any new, larger twins.
This trend highlights part of the difficulty we face in trying to find optimally smooth parameters
of cryptographic size: increasing the smoothness bound B makes the size of the set of twins grow
rapidly, but the growth of the largest twins we find is typically painstakingly slow. The set of
100-smooth twins has cardinality 13,374, with the largest pair being 58 bits; increasing B to 200
gives a set of cardinality (at least) 345,192, but the largest pair has only grown to be 79 bits. In
fact, most of this jump in the bitlength of the largest twins occurs when increasing B = 97 (58
bits) to include two more primes with B = 103 (76 bits). Including the 19 additional primes up to
199 only increases the bitlength of largest twins with B = 199 by 3 (79 bits), and this is indicative
of what we observe when B is increased even further.

Contributions

We give an optimised implementation of CHM that allows us to run the algorithm for much larger
values of B in order to find larger sized twins. For example, the original CHM paper reported
that the full algorithm with B = 200 terminated in approximately 2 weeks; our implementation
did the same computation in around 943 seconds on a laptop. Increasing the smoothness bound
to B = 547, our implementation converged with a set of 82,026,426 pairs of B-smooth twins, the
largest of which are the 122-bit pair (r, r + 1) with

(10.1)

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283

· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

Although it remains infeasible to increase B to the point where the twins found through CHM
are large enough to be used out-of-the-box in isogeny-based schemes (i.e. close to 2256), we are
able to combine the larger twins found through CHM with techniques from the literature in order
to find much smoother sets of SQIsign parameters. In this case we are aided by the requirements
for SQIsign, which permit us to relax the size of the smooth factor that divides p2−1. The current
state-of-the-art instantiation [126] uses primes p such that

ℓf · T | (p2 − 1),

199

where ℓ is a small prime (typically ℓ = 2), where f is as large as possible, and where T ≈ p5/4 is
both coprime to ℓ and B-smooth. For example, the original SQIsign implementation [125] used a
256-bit prime p such that

p2 − 1 = 234 · T1879 ·R,

where T1879 is an odd 334-bit integer1 whose largest prime factor is B = 1879, and R is the
rough factor; a 144-bit integer containing no prime factors less than or equal to B. As another
example, De Feo, Leroux, Longa, and Wesolowski [126, §5] instead use a 254-bit prime p with

p2 − 1 = 266 · T3923 ·R,

where T3923 is an odd 334-bit integer whose largest prime factor is B = 3923, and where all of R’s
prime factors again exceed B.

During the search mentioned above that found the record 547-smooth twins in Equation (10.1),
over 82 million other pairs of smaller sized twins were found. One such pair was the 63-bit twins
(r − 1, r) with r = 8077251317941145600. Taking p = 2r4 − 1 gives a 253-bit prime p such that

p2 − 1 = 249 · T479 ·R,

where T479 is an odd 328-bit integer that is 479-smooth. This represents a significant improvement
in smoothness over the T values obtained in [125] and [126]. Although the smoothness of T is not
the only factor governing the efficiency of the scheme, our analysis in Section 10.5 suggests that
the parameters found in this paper are interesting alternatives to those currently found in SQIsign
implementations, giving instantiations with a significantly lower expected signing cost, but with a
modest increase in verification cost.

Just as we transformed a pair of 85-bit twins into a 255-bit prime by taking p = 2r3 − 1,
we combine the use of twins found with CHM and primes of the form p = 2rn − 1 with n ≥ 3

to obtain several SQIsign-friendly primes that target higher security levels. For example, with
some 64-bit twins (r, r + 1) found through CHM, we give a 382-bit prime p = 2r6 − 1 such that
p2−1 = 280 ·T10243 ·R, where T is an odd 495-bit integer that is 10243-smooth; this prime would be
suitable for SQIsign signatures geared towards NIST Level III security. As another example, with
some 85-bit twins (r, r+1), we give a 508-bit prime p = 2r6− 1 such that p2− 1 = 286 ·T150151 ·R,
where T is a 639-bit integer that is 150151-smooth; this prime would be suitable for SQIsign
signatures targeting NIST Level V security.

Remark 10.0.2. A recent paper by Eriksen, Panny, Sotáková, and Veroni [150] showed that com-
puting the constructive Deuring correspondence, needed to construct SQIsign signatures, is feasible
without choosing a specific characteristic p beforehand. However, the paper further confirms (com-
paring [150, Figure 3] with [150, Table 2]) that the efficiency of this computation depends heavily
on the factorisation of p2 − 1 (or more generally pk − 1 for small k). In a setting that allows us to
freely choose a fixed characteristic p, for instance in the SQIsign setting, it is clear that one should
choose p carefully for optimal performance.

1The initial SQIsign requirements [125] had T ≈ p3/2, but T1879 corresponds to the new requirements.

200

Remark 10.0.3. Another recent work introduces SQIsignHD [116], a variant of SQIsign in higher
dimensions. Although the signature generation could be significantly faster in SQIsignHD, the
verification algorithm requires computing 4-dimensional isogenies. Since the research of imple-
menting practical 4-dimensional isogenies has mainly only begun since the SIDH attacks, there is
no implementation of SQIsignHD verification yet.2 While breakthroughs in this area of research
could change the picture of the field, it remains unclear whether the verification algorithm can be
implemented efficiently enough to consider SQIsignHD for practical applications, or to reach similar
performance as SQIsign verification.

Availability of software

Our implementation of the CHM algorithm is written in C/C++ and is found at

https://github.com/GiacomoBruno/TwinsmoothSearcher.

Outline

Section 10.1 reviews prior methods for generating large instances of twin smooths. In Section 10.2,
we recall the CHM algorithm and give a generalisation of it that may be of independent interest.
Section 10.3 details our implementation of the CHM algorithm and presents a number of opti-
misations that allowed us to run it for much larger values of B. In Section 10.4, we discuss the
combination of CHM with primes of the form p = 2xn − 1 to give estimates on the probabilities
of finding SQIsign parameters at various security levels. Section 10.5 presents our results, giv-
ing record-sized twin smooth instances and dozens of SQIsign-friendly primes that target NIST’s
security levels I, III, and V.

10.1 Preliminaries and prior methods

We start by fixing some definitions and terminology.

Definition 10.1.1. A positive integer n is called B-smooth for some real number B > 0 if all
prime divisors of n are at most B. An integer n generates a B-smooth value of a polynomial f(X)

if f(n) is B-smooth. In this case we call n a B-smooth value of f(X). We call two consecutive
integers B-smooth twins if their product is B-smooth. An integer n is called B-rough if all of its
prime factors exceed B.

We now review prior methods of searching for twin smooth integers by following the descriptions
of the three algorithms reviewed in [105, §2] and including the method introduced in [105] itself.

Solving Pell equations. Fix B, let {2, 3, . . . , q} be the set of primes up to B with cardinality
π(B),3 and consider the B-smooth twins (r, r + 1). Let x = 2r + 1, so that x − 1 and x + 1 are

2Since the publication of this work, Dartois [115] has implemented four-dimensional (2, 2, 2, 2)-isogenies in the
theta model in Python/SageMath. We see that computing a chain of (2, 2, 2, 2)-isogenies is 16 − 18x slower than
computing a chain of 2-isogenies of the same length [115, Table 2 and 3].

3In a slight clash of notation with previous chapters, here π denotes the prime-counting function: π(x) counts
the number of prime numbers less than or equal to x ∈ N.

201

https://github.com/GiacomoBruno/TwinsmoothSearcher

also B-smooth, and let D be the squarefree part of their product (x− 1)(x+1), i.e. x2− 1 = Dy2

for some y ∈ Z. It follows that Dy2 is B-smooth, which means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities forD, Størmer [300]
reverses the above argument and proposes to solve the 2π(B) Pell equations

x2 −Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the complete set of
B-smooth twins.

The largest pair of 2-smooth integers is (1, 2), the largest pair of 3-smooth integers is (8, 9),
and the largest pair of 5-smooth integers is (80, 81). Unfortunately, solving 2π(B) Pell equations
becomes infeasible before the size of the twins we find is large enough (i.e. exceeds 2200) for our
purposes. As we saw in the introduction, Costello [99] reports that with B = 113 the largest twins
(r, r + 1) found upon solving all 230 Pell equations have r = 19316158377073923834000 ≈ 275.

The extended Euclidean algorithm. The most naïve way of searching for twin smooth integers
is to compute B-smooth numbers r until either r − 1 or r + 1 also turns out to be B-smooth. A
much better method [99, 125] is to instead choose two coprime B-smooth numbers α and β that
are both of size roughly the square root of the target size of r and r + 1. On input of α and β,
Euclid’s extended GCD algorithm outputs two integers (s, t) such that αs+βt = 1 with |s| < |β/2|
and |t| < |α/2|. We can then take {m,m+ 1} = {|αs|, |βt|}, and the probability of m and m+ 1

being B-smooth is now the probability that s · t is B-smooth. The reason this performs much
better than the naïve method above is that s · t with s ≈ t is much more likely to be B-smooth
than a random integer of similar size.

Searching with r = xn− 1. A number of works [99, 125, 126] have found performant parameters
by searching for twins of the form (r, r+1) = (xn−1, xn), for relatively small n ∈ Z. For example,
suppose we are searching for b-bit twins (r, r+1), and we take n = 4 so that r = (x2+1)(x−1)(x+1).
Instead of searching for two b-bit numbers that are smooth, we are now searching for three smooth
(b/4)-bit numbers (i.e. x− 1, x, and x+1) and one smooth (b/2)-bit number, which increases the
probability of success (see [105]).

Searching with PTE solutions. The approach taken by Costello, Meyer, and Naehrig [105] can
be viewed as an extension of the method above, where the important difference is that for n > 2

the polynomial xn − 1 does not split in Z[x], and the presence of higher degree terms (like the
irreducible quadratic x2 +1 above) significantly hampers the probability that values of xn− 1 ∈ Z
are smooth. Instead, the algorithm in [105] takes (r, r+1) = (f(x), g(x)), where f(x) and g(x) are
both of degree n and are composed entirely of linear factors. This boosts the success probability
again, but one of the difficulties facing this method is that polynomials f(x) and g(x) that differ
by a constant and are completely split are difficult to construct for n ≥ 4. Fortunately, instances
of these polynomials existed in the literature since they can be trivially constructed using solutions

202

to the Prouhet-Tarry-Escott (PTE) problem (see [105]).

10.2 The CHM algorithm

We first recall the Conrey, Holmstrom, and McLaughlin (CHM) algorithm [86], a remarkably simple
algorithm that generates twin smooth integers (or smooth neighbours as they are called in [86]),
i.e., smooth values of the polynomial X(X+1). We then present a generalisation of this algorithm,
which generates smooth values of any monic quadratic polynomial. The algorithm generalises the
CHM algorithm, as well as another algorithm in the literature by Conrey and Holmstrom [87],
which generates smooth values of the polynomial X2 + 1. In the end, we are primarily interested
in the CHM algorithm, but present the generalised algorithm here, as it may be of independent
interest.

10.2.1 Finding Smooth Twins with the CHM Algorithm

Conrey, Holmstrom, and McLaughlin [86] present the following algorithm for producing many
B-smooth values of X(X + 1). It starts with the initial set

S(0) = {1, 2, . . . , B − 1}

of all integers less than B, representing the B-smooth twins (1, 2), (2, 3), . . . , (B − 1, B). Next, it
iteratively passes through all pairs of distinct r, s ∈ S(0), r < s and computes

t

t′
=

r

r + 1
· s+ 1

s
,

writing t
t′ in lowest terms. If t′ = t + 1, then clearly t also represents a twin smooth pair. The

next set S(1) is formed as the union of S(0) and the set of all solutions t such that t′ = t+ 1. Now
the algorithm iterates through all pairs of distinct r, s ∈ S(1) to form S(2) and so on. We call the
process of obtaining S(d) from S(d−1) the d-th CHM iteration. Once S(d) = S(d−1), the algorithm
terminates.

Example 10.2.1. We illustrate the algorithm for B = 5, i.e. with the goal to generate 5-smooth
twin integers. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs (r, s) ∈ S(0) with r < s, we see that the only ones that yield a new twin
smooth pair (t, t + 1) via Equation (10.2) with t not already in S(0) are (2, 3), (2, 4) and (3, 4),
namely,

2

2 + 1
· 3 + 1

3
=

8

9
,

2

2 + 1
· 4 + 1

4
=

5

6
, and

3

3 + 1
· 4 + 1

4
=

15

16
.

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}.

203

The second and third CHM iterations give

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24} and S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}.

The fourth iteration does not produce any new numbers, i.e. we have S(4) = S(3), the algorithm
terminates here and returns S(3). This is indeed the full set of twin 5-smooth integers as shown
in [300], see also [214, Table 1A].

Remark 10.2.2. The CHM check that determines whether a pair (r, s) yields an integer solution
t to the equation

(10.2)
t

t+ 1
=

r

r + 1
· s+ 1

s

can be rephrased by solving this equation for t, which yields

(10.3) t =
r(s+ 1)

s− r
.

This shows that in order for (r, s) to yield a new pair, s− r must divide r(s+1) and in particular,
must be B-smooth as well.

10.2.2 Generalising the CHM Algorithm

We now present a generalisation of the CHM algorithm, which finds smooth values of any monic
quadratic polynomial f(X) = X2 + aX + b ∈ Z[X] ⊆ Q[X]. The algorithm works with elements
in the Q-algebra R = Q[X]/⟨f(X)⟩. Let X denote the residue class of X in R. The generalisation
closely follows the idea of the CHM algorithm and is based on the observation that for any r ∈ Q,
we have that

NR/Q(r −X) = f(r),

where NR/Q(α) denotes the algebraic norm of α ∈ R over Q. The algorithm now starts with an
initial set

S(0) = {r1 −X, . . . , rd −X},

where ri are smooth integer values of f(X), which means that the element ri − X has smooth
non-zero norm. Next, in the d-th iteration of the algorithm, given any two α, β ∈ S(d−1), compute

α · β−1 ·NR/Q(β) = r − sX

for integers r, s (notice that β is invertible, since it has non-zero norm). Now, if s divides r, we
obtain an integer t = r

s . It follows that

f(t) = NR/Q

(r
s
−X

)
= NR/Q(r − sX)s−2

= NR/Q(α · β−1 ·NR/Q(β))s−2

= NR/Q(α)NR/Q(β)s
−2.

204

Since both NR/Q(α) and NR/Q(β) are B-smooth and s is an integer, it follows that t is a B-smooth
value of f(X). The set S(d) is then formed as the union of S(d−1) and the set of all such integral
solutions. Finally, we terminate when S(d) = S(d−1).

10.2.3 Equivalence with Previous Algorithms

We now show that the CHM algorithm, as well as another algorithm by Conrey and Holmstrom
[87], are special cases of the generalised algorithm, for the polynomials f(x) = X2 + X, and
f(X) = X2 + 1 respectively.

Smooth values of X2+X. To see that the CHM algorithm (see Section 10.2.1) is indeed a special
case of the generalised algorithm above, we show how it works for f(X) = X(X + 1) = X2 +X.
Consider the algebra R = Q[X]/⟨X2 +X⟩. This embeds into the matrix algebra M2×2(Q) via

ψ : r + sX →

(
r 0

s r − s

)
.

Instead of working with elements in R, we will work with elements in ψ(R) ⊆M2×2(Q) since this
simplifies the argument. In this case, for α ∈ R, we have

NR/Q(α) = det(ψ(α)).

The set corresponding to the initial set in the CHM algorithm is

S(0) = {
(

1 0
−1 2

)
,
(

2 0
−1 3

)
, . . . ,

(
B−1 0
−1 B

)
}.

All these elements clearly have B-smooth norm. The d-th CHM iteration proceeds as follows: For
all
(
r 0
−1 r+1

)
,
(
s 0
−1 s+1

)
in S(d−1), we try

(
r 0

−1 r + 1

)(
s 0

−1 s+ 1

)−1

s(s+ 1) =

(
r 0

−1 r + 1

)((
s+ 1 0

1 s

)
1

s(s+ 1)

)
s(s+ 1)

=

(
r(s+ 1) 0

−(s− r) (r + 1)s

)
.

Finally, we transform this matrix into the right form, i.e. into a matrix corresponding to an element
of the form τ = t−X, which means that ψ(τ) has a −1 in the lower left corner. So, we divide by
s− r and end up with the matrix(

r(s+1)
s−r 0

−1 (r+1)s
s−r

)
=

(
r(s+1)
s−r 0

−1 r(s+1)
s−r + 1

)
.

Now if r(s+1)
s−r is an integer, we add this matrix to the next set S(d+1).

As we have seen in Remark 10.2.2, this integer indeed corresponds to the solution given in
Equation (10.3) of Equation (10.2) and therefore, the generalised algorithm in the case f(X) =

X2 +X is equivalent to the original CHM algorithm.

205

Smooth values of X2 +1. Conrey and Holmstrom later presented a method to generate smooth
values of X2 + 1 [87]. Similar to the CHM algorithm, it starts with an initial set S(0) of positive
smooth values of X2 + 1. Again, for d > 0 and given r, s ∈ S(d−1), r < s, they compute

rs− 1

s+ r
.

The next set S(d) is then again formed as the union of S(d−1) and the set of all such values that
are integers.

It is equally straightforward to verify that this algorithm is also a special case of the generalised
CHM algorithm described above in Section 10.2.2. We could again work with matrices in M2×2(Q),
but here, we are actually working in K = Q[X]/⟨X2 +1⟩, which is isomorphic to the number field
Q(i), where i2 = −1. The product of the elements α = r − i and β = s− i is given as

αβ = (r − i)(s− i) = (rs− 1)− (r + s)i.

Conrey and Holmstrom’s method then simply tries all such products αβ. However, a possibly
better choice could be to use

αβ−1NK/Q(β) = αβ = (r − i)(s+ i) = (rs+ 1)− (s− r)i

as described in our generalisation. This is due to the fact that the new denominator, s − r, is
smaller and hence

rs+ 1

s− r
is more likely to be an integer (assuming that the numerator follows a random, uniform distribu-
tion). As a result, we can expect the algorithm to converge faster. Another alternative is to include
both positive and negative values in the initial set S(0). Observe that in this case, it does not matter
whether one uses (rs+1)/(s−r) or (rs−1)/(s+r), as (rs+1)/(s−r) = −(s(−r)+1)/(s+(−r))).

Whichever option is chosen, one tries to divide by r+s resp. s−r, and if the result is an element
in Z[i], it is added to the next set S(d) of smooth values of X2+1. Conrey and Holmstrom’s method
is therefore another special case of the generalised algorithm.

Remark 10.2.3. We note that neither the generalised CHM algorithm, nor any of the previous
special cases give any guarantees to what proportion of B-smooth values of f(X) it finds. However,
for the previous special case algorithms, certain conjectural results have been stated, based on
numerical evidence, which suggests that the algorithm returns all but a small fraction of all smooth
values of the respective quadratic polynomials. We make no similar claims for the general case
algorithm.

10.3 Searching for large twin smooth instances: CHM in

practice

Ideally, the CHM algorithm could be run as described in the original paper [86] with a large enough
smoothness bound B to find twin smooths of cryptographic sizes. However, experiments suggest

206

that this is not feasible in practice. We report on data obtained from an implementation of the
pure CHM algorithm in Section 10.3.1, present several optimisations in Section 10.3.2 and detail
our optimised implementation in Section 10.3.3.

10.3.1 Running CHM in practice

To collect data and assess the feasibility of finding large enough twin smooths, we implemented
a somewhat optimised version of the pure CHM algorithm. In particular, this implementation is
parallelised, and avoids multiple checks of the same pairs of twin smooths (r, s). Furthermore, we
iterate through smoothness bounds: We start with a small bound B1 and the initial set S(0)

1 =

{1, . . . , B1 − 1}, and use the CHM algorithm to iteratively compute sets S(i)
1 until we reach some

d1 such that S(d1)
1 = S

(d1−1)
1 . In the next iteration, we increase the smoothness bound to B2 > B1

and define the initial set S(0)
2 = S

(d1)
1 ∪ {B1, . . . , B2− 1}. Again we compute CHM iterations until

we find d2 such that S(d2)
2 = S

(d2−1)
2 , where we avoid checking pairs (r, s) that have been processed

in earlier iterations. Ideally, we could repeat this procedure until we reach a smoothness bound
Bi for which the CHM algorithm produces large enough twin smooths for cryptographic purposes.
However, our data suggests that this is infeasible in practice due to both runtime and memory
limitations.

In particular, we ran this approach up to the smoothness bound B = 547, and extrapolating
the results gives us rough estimations of the largest possible pair and number of twin smooths per
smoothness bound.

After the B = 547 iteration, the set of twin smooths contains 82,026,426 pairs, whose bitlength
distribution roughly resembles a normal distribution centered around bitlength 58. The largest pair
has a bitlength of 122 bits. An evaluation of the obtained set is shown in Figure 10.1. Figure 10.1a
shows the distribution of bitsizes in the full set, while Figure 10.1b shows that of the subset of all
199-smooth twins obtained in this run. Figure 10.1c shows the bitsize of the largest q-smooth twin
pairs for each prime q between 3 and 547. And Figure 10.1d and Figure 10.1e show the number of
q-smooth twins for each such q.

Using the data of these experiments, we can attempt to estimate at which smoothness bound
B this approach can be expected to reach twin smooths of cryptographic sizes, and how much
memory is required to run iterations to reach this B. The data visualised in Figure 10.1c indicates
that the bound necessary for the largest twin smooth pair obtained by running CHM with this
bound to reach a bitlength of 256 lies in the thousands, possibly larger than 5,000. Similarly, the
data displayed in Figure 10.1d and Figure 10.1e shows how quickly the number of B-smooth twins
increases with B. Given that the effort for CHM iterations grows quadratically with the set size,
these estimates indicate that it is not feasible to reach cryptographically sized smooth twins with
the original CHM algorithm.

10.3.2 Optimisations

One major issue with running the plain CHM algorithm for increasing smoothness bound is the
sheer size of data that needs to be dealt with. The sets S(di)

i grow very rapidly and the quadratic
complexity of checking all possible pairs (r, s) leads to a large runtime. The natural question that

207

(a) Distribution of bitsizes for the full set of 547-
twin smooth pairs.

(b) Distribution of bitsizes for the subset of 199-twin
smooth pairs.

(c) Bitsizes of the largest q-smooth twins for all primes q between 3 and 547.

(d) Number of q-smooth twins for all primes q between
3 and 233.

(e) Number of q-smooth twins for all primes q between
239 and 547.

Figure 10.1: Evaluation of the set of 547-smooth twins obtained by running the original CHM algorithm
with smoothness bound B = 547. The bitsize of a pair (r, r + 1) is ⌊log r⌋ + 1. Data for the number of
q-smooth twins for all primes q up to 547 has been split into two histograms of different scale.

208

arises is whether CHM can be restricted to checking only a certain subset of such pairs without
losing any or too many of the new smooth neighbours. Furthermore, if the purpose of running
the CHM algorithm is not to enumerate all twin smooth pairs for a given smoothness bound but
instead, to produce a certain number of pairs of a given size or to obtain some of the largest pairs,
it might even be permissible to omit a fraction of pairs.

To find a sensible way to restrict to a smaller set, we next discuss which pairs (r, s), r < s

result in a given twin smooth pair (t, t+ 1) via

r

r + 1
· s+ 1

s
=

t

t+ 1
.(10.4)

This is discussed in [86, §3], but we elaborate on it in a slightly different way here. Let t > 0, let
u be any divisor of t and v any divisor of t + 1. Let h, x ∈ Z be given by t = uh and t + 1 = vx

(where u, v, h, x > 0). Therefore, v/u = h/x + 1/(ux). If u < v then h > x and if u > v then
h < x. We therefore fix u < v (otherwise switch the roles of u, v and h, x). Since u < v, the pair

(10.5) (r, s) = (t− u

v
(t+ 1),

v

u
t− (t+ 1) =

v

u
r)

satisfies Equation (10.4), and it follows that

(10.6) r = u(h− x), r + 1 = x(v − u), s = v(h− x), s+ 1 = h(v − u).

Therefore, s/r = v/u and (s + 1)/(r + 1) = h/x, u < v, h > x and 0 < r < s. This also means
that s = r + (v − u)(h− x), t = r + ux and that gcd(r(s+ 1), s(r + 1)) = s− r = (v − u)(h− x)
(note that gcd(uh, vx) = gcd(t, t+ 1) = 1).

Conversely, given (r, s) with r > 0 that satisfy Equation (10.4), define u = r/ gcd(r, s) and
v = s/ gcd(r, s), then s > r, u < v and u | t, v | (t + 1). Hence, we have the correspondence
between the set of pairs (r, s) with r < s that yield a new twin pair (t, t+ 1) via Equation (10.4)
and the set of pairs of divisors of t and t+ 1 described in [86, §3] as follows:

{(r, s) | r < s and r(s+ 1)(t+ 1) = s(r + 1)t}

←→ {(u, v) | u < v and u | t, v | (t+ 1)}.(10.7)

However, this correspondence does not identify the pairs (r, s) corresponding to twin smooths, i.e.
given (u, v) there is no guarantee that any of r, r + 1, s, s+ 1 are B-smooth. This is not discussed
in [86, §3]. The next lemma fills this gap by stating an explicit condition on the divisors u, v, h, x.

Lemma 10.3.1. Let t ∈ Z such that t(t + 1) is B-smooth. Let (u, v) be a pair of divisors such
that t = uh, t+ 1 = vx and let (r, s) be defined as in Equation (10.5).

Then r(r + 1)s(s+ 1) is B-smooth if and only if (v − u)(h− x) = s− r is B-smooth.

Proof. As divisors of t and t + 1, u and v as well as h and x are all B-smooth. The statement
follows from the Equation (10.6).

Using similar sized pairs. We next consider the following condition to restrict the visited
pairs (r, s) in CHM as a mechanism to reduce the set size and runtime. Let k > 1 be a constant

209

parameter. We then only check pairs (r, s) if they satisfy

(10.8) 0 < r < s < kr.

Assume that (r, s) results in a pair (t, t + 1) through satisfying Equation (10.4). As seen above,
s
r = v

u for u | t, v | (t + 1), so we can use (u, v) to determine which values k are useful. Since
v
u < k, it follows s = v

u t− (t+ 1) < (k − 1)t. If we are only interested in obtaining a new t from a
pair (r, s) such that s < t, we can take k ≤ 2, overall resulting in 1 < k ≤ 2.

This constant k seems to be a good quantity to study as we can relate it to the factors of v−u.
Indeed, v − u = u(vu − 1) = u(sr − 1) and we have s < kr.

Definition 10.3.2. Let (r, r + 1) and (s, s + 1) be twin smooths with r < s and k ∈ R with
1 < k ≤ 2. We call the pair (r, s) k-balanced if r < s < kr.

We want to find a k such that a k-balanced pair (u, v) subject to the above conditions will yield
a balanced r, s such that r, r + 1, s, s+ 1 are B-smooth, or equivalently that v − u and h− x are.

Running the CHM algorithm only with 2-balanced pairs (r, s) then guarantees that any t pro-
duced by Equation (10.4) will be larger than the inputs r and s. Although we sacrifice completeness
of the set of twin B-smooths with this approach, we can significantly reduce the runtime.

We can even push this approach further. Recall that we require gcd(r(s+ 1), (r+ 1)s) = s− r
in order to generate a new pair of twin smooths (t, t + 1). By Lemma 10.3.1, this can only hold
if ∆ := s − r is B-smooth. Hence, only checking pairs (r, s) for which ∆ is likely to be smooth
increases the probability for a successful CHM step. Heuristically, the smaller ∆ is, the better the
chances for ∆ to be smooth. Furthermore, if ∆ contains small and only few prime factors, the
probability for the condition ∆ = gcd(r(s+1), (r+1)s) is relatively high. We can summarise this
in the following heuristic.

Heuristic 10.3.3. Let k1, k2 ∈ R with 1 < k1 < k2 ≤ 2, and (r1, s1) resp. (r2, s2) a k1- resp.
k2-balanced pair of twin smooths. Then the probability for (r1, s1) to generate new twin smooths
via the CHM equation is larger than that for (r2, s2).

To save additional runtime, we can thus pick k closer to 1, and only check the pairs (r, s) that
are most likely to generate new twin smooths. Therefore, we can still expect to find a significant
portion of all twin B-smooths for a given smoothness bound B. We expand on the choice of k and
different ways of implementing this approach in Section 10.3.3.

Thinning out between iterations. Another approach to reduce both runtime and memory
requirement is to thin out the set of twin smooths between iterations. In particular, once we
finished all CHM steps for a certain smoothness bound Bi, we can remove twins from the set S(di)

i

based on their likeliness to produce new twin smooths before moving to the next iteration for Bi+1.
One possible condition for removing twins is to look at their smoothness bounds. Let (r, r+1)

be B1-smooth, (s, s+ 1) be B2-smooth (but not B-smooth for any B < B2), and B1 ≪ B2. Since
(s, s+ 1) contains (multiple) prime factors larger than B1, they cannot be contained in (r, r + 1),
which makes the requirement gcd(r(s+1), (r+1)s) = s− r heuristically less likely to be satisfied.
However, in practice it turns out that the differences between the smoothness bounds we are
concerned with are not large enough for this heuristic to become effective.

210

In our experiments, it turned out to be more successful to keep track of how many new twin
smooths each r produces. We can then fix some bound m, and discard twins that produced
less than m twins after a certain number of iterations. Our experiments suggest that using this
approach with carefully chosen parameters yields a noticeable speed-up, but fails completely at
reducing the memory requirements, as we still need to keep track of the twins we already found.
Furthermore, in practice the approach of only using k-balanced twins turned out to be superior,
and hence we focus on this optimisation in the following.

10.3.3 Implementation

We implemented the CHM algorithm with several of the aforementioned optimisations in C++,
exploiting the fact that it parallelises perfectly. Note that some of our approaches require the set
of twin smooths to be sorted with respect to their size. Hence, an ordered data structure is used
for storing the twins set. We used the following techniques and optimisations.

CHM step. For each pair (r, s) considered by the implementation, we have to check if Equa-
tion (10.4) holds. As mentioned in Section 10.3.2, this requires that gcd(r(s+1), (r+1)s) = s− r
is satisfied. However, we can completely avoid the GCD calculation by observing that we require
r · (s+ 1) ≡ 0 mod (s− r) (see Equation (10.3)). Only if this is the case we perform a division to
compute t, which represents the new pair of twin smooths (t, t + 1). Therefore, we only perform
one modular reduction per considered pair (r, s), followed by one division if the CHM step is suc-
cessful. This is significantly cheaper than a naïve implementation of Equation (10.4) or a GCD
computation.

Data structure. Initially the set of twins was organised in a standard C array, that each time
an iteration completed was reallocated to increase its size, and reordered. To avoid the overall
inefficiency of this method we moved to use the C++ standard library std::set. This data structure
is implemented with a Red Black tree, guarantees O(logN) insertion and search, while keeping
the elements always ordered.

We then moved to use B+Trees [34], that have the same guarantees for insertion, search, and
ordering, but are more efficient in the memory usage. Because the elements of a B+Tree are stored
close to each other in memory it becomes much faster to iterate through the set, an operation that
is necessary for creating the pairs used in each computation.

Implemented optimisations. As discussed in Section 10.3.2, we focus on the case of k-balanced
pairs (r, s), which satisfy r < s < kr. Compared to the full CHM algorithm, this leads to a smaller
set of twin smooths, but allows for much faster running times. We implemented the k-balanced
approach in various different flavours.

Global-k. In the simplest version - the global-k approach - we initially pick some k with 1 <

k ≤ 2, and restrict the CHM algorithm to only check k-balanced pairs (r, s). The choice of
k is a subtle matter. Picking k too close to 1 may lead to too many missed twin smooths,
such that we cannot produce any meaningful results. On the other hand, picking k close to
2 may result in a relatively small speed-up, which does not allow for running CHM for large
enough smoothness bounds B. Unfortunately, there seems to be no theoretical handle on the

211

optimal choice of k, which means that it has to be determined experimentally. We note that
when picking an aggressive bound factor k ≈ 1, small numbers r in the set of twins S may
not have any suitable s ∈ S they can be checked with. Thus, we pick a different bound, e.g.
k = 2, for numbers below a certain bound, e.g. for r ≤ 220.

Iterative-k. Instead of iterating through smoothness bounds Bi as described in Section 10.3.1
and using the global-k approach, we can switch the roles of B and k if we are interested
in running CHM for a fixed smoothness bound B. We define some initial value k0, a target
value kmax, and a step size kstep > 0. In the first iteration, we run CHM as in the global-k

approach, using k0. The next iteration then increases to k1 = k0 + kstep, and we add the
condition to not check pairs (r, s) if they were already checked in previous iterations. We
repeat this iteration step several times until we reach kmax. Compared to the global-k

approach, this allows us to generate larger B-smooth twins faster, since we restrict to the
pairs (r, s) first that are most likely to generate new twins. However, the additional checks if
previous pairs have been processed in earlier iterations add a significant runtime overhead.
Thus, this method is more suitable for finding well-suited choices of k, while actual CHM
searches benefit from switching to the global-k approach.

Constant-range. In both the global-k and iterative-k approach, the checks if a pair (r, s)

is k-balanced, or has been processed in earlier iterations, consumes a significant part of
the overall runtime. Therefore, we can use constant ranges to completely avoid these checks.
Since we always keep the set of twins S sorted by size, the numbers s closest to r (with s > r)
are its neighbours in S. Thus, we can sacrifice the exactness of the k-balanced approaches
above, and instead fix a range R and for each r check (r, s) with the R successors s of r in S.
As shown below, this method significantly outperforms the global-k approach due to the
elimination of all checks for k-balance. This is true even when R is large enough to check
more pairs than are considered in the global-k approach for a given k.

Variable-range. Similar to the constant-range approach, we can adapt the range R depending
on the size of r. For instance, choosing r at the peak of the size distribution will lead to
many possible choices of s such that (r,s) are balanced. Hence, we can choose a larger range
R whenever more potential pairs exist, while decreasing R otherwise. In practice, the per-
formance of this method ranks between global-k and constant-range by creating roughly
the same pairs that global-k creates without any of the overhead of the balance checks. If
R is chosen large enough such that the constant-range approach ends up generating more
pairs than global-k, then variable-range performs better. Realistically, the size of the
range R increases by (very) roughly 3% for each prime number smaller than the smoothness
bound B, and slows down the algorithm drastically at higher smoothness, similarly to the
k-based approaches.

Remark 10.3.4. Similar to the variable-range approach, we experimented with a variant of
the global-k approach, which adjusts k according to the size of r to find suitable s for the CHM
step. However, the constant-range and variable-range approaches turned out to be superior
in terms of performance, and therefore we discarded this variable-k variant.

212

Variant Parameter Runtime Speed-up #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 10.1: Performance results for different variants of our CHM implementation for smoothness bound
B = 300. Speedup factors refer to the full CHM variant.

Performance comparison. To compare the implications of the optimisations in practice, we
ran different variants of the CHM implementation for the fixed smoothness bound B = 300. All
experiments ran on a machine configured with 4 x Xeon E7-4870v2 15C 2.3 GHz, 3072 GB of
RAM. The total amount of parallel threads available was 120. As described above, the global-k

and constant-range approach significantly outperform their respective variants, hence we focus
on different configurations of these two methods.

The results are summarised in Table 10.1. For both the global-k and the constant-range

approach we measured the results for conservative and more aggressive instantiations, where smaller
values of k and R are considered more aggressive. It is evident that already for the conservative
instantiations, we gain significant performance speed-up, while still finding almost the full set of
twin smooths, and most of the 100 largest 300-smooth twins. For the more aggressive instantiations,
we miss more twins, yet still find a significant amount of large twins.

As discussed above, the constant-range approach outperforms the global-k approach in
terms of runtime, due to the elimination of all checks for k-balance of twins. Interestingly, while
very aggressive instantiations of constant-range miss more twin smooths, they find a larger
share of the largest 100 twins than their global-k counterpart. Therefore, we conclude that for
larger smoothness bounds B, for which we cannot hope to complete the full CHM algorithm,
constant-range is the most promising approach for obtaining larger twin smooths within feasible
runtimes.

Remark 10.3.5. While all optimisations lose a small proportion of the largest twin smooths,
they are not necessarily lost permanently. In practice, when iterating to larger smoothness bounds
Bi, we often also find some Bj-smooth twins for bounds Bj < Bi. Thus, the size of the set of
300-smooth twins usually increases in the optimised variants when moving to larger B.

Remark 10.3.6. In the following sections, we will require twin smooths of a certain (relatively
small) bitlength. This can easily be incorporated into all implemented variants by removing all
twins above this bound after each iteration. This means that we cut off the algorithm at this size,
and do not attempt to obtain larger twins, which significantly improves the runtime and memory
requirements.

213

10.4 Cryptographic primes of the form p = 2rn − 1

This section focuses on finding primes suitable for isogeny-based cryptographic applications. As
discussed in the previous sections, the pure CHM method does not allow us to directly compute
twins of at least 256 bits as required for this aim. However, some cryptographic applications, for
example the isogeny-based signature scheme SQIsign, do not need twins (r, r + 1) that are fully
smooth. Indeed, the current4 incarnation of SQIsign requires a prime p that satisfies 2fT | p2 − 1,
where f is as large as possible, and T ≈ p5/4 is smooth and odd [126]. This flexibility allows us to
move away from solely using CHM and, instead, use CHM results as inputs to known methods for
finding such primes. At a high level, we will find fully smooth twins of a smaller bit-size via CHM
and boost them up using the polynomials pn(x) = 2xn − 1 for carefully chosen n. If r, r + 1 are
fully smooth integers and n is not too large, we can guarantee a large proportion of pn(r)2 − 1 to
be smooth.

Notation. For a variable x, we will denote 2xn − 1 by pn(x), and the evaluated polynomial pn(r)
by p, emphasising that it is an integer.

General method. In this section, we will give a more in-depth description of the approach to
obtaining cryptographic sized primes p, such that p2 − 1 has log(T ′) bits of B-smoothness, where
T ′ = 2fT . We recall that for our SQIsign application, we have log(p) ∈ {256, 384, 512} for NIST
Level I, III and V (respectively), T ≈ p5/4 and f as large as possible. In the current implementation
of SQIsign, we have f ≈ ⌊log

(
p1/4

)
⌋ (i.e., T ′ ≈ p3/2), and so we aim for this when finding primes.

Fix a smoothness bound B and let pn(x) = 2xn − 1. We have pn(x)2 − 1 = 4xn(x− 1)f(x) for
some polynomial f(x) given in Table 10.2.

n pn(x)
2 − 1

2 4x2(x− 1)(x+ 1)

3 4x3(x− 1)(x2 + x+ 1)

4 4x4(x− 1)(x+ 1)(x2 + 1)

5 4x5(x− 1)(x4 + x3 + x2 + x+ 1)

6 4x6(x− 1)(x+ 1)(x2 − x+ 1)(x2 + x+ 1)

Table 10.2: Factorisation of pn(x)2 − 1 for n = 2, 3, 4, 5, 6, where pn(x) = 2xn − 1

We observe that for even n, both x + 1 and x − 1 appear in the factorisation of pn(x)2 − 1.
In this case, for twin smooths (r, r ± 1), evaluating pn(x) at r guarantees that we have a smooth
factor 4rn(r ± 1) in p2 − 1. For n odd, we will only have that x − 1 appears in the factorisation,
and therefore only consider twins (r, r − 1) to guarantee we have B-smooth factor 4rn(r − 1).

The first step is to use our implementation of the CHM algorithm, described in Section 10.2
and Section 10.3, to obtain B-smooth twins (r, r ± 1) of bitsize approximately (log p − 1)/n. We
then obtain primes of suitable sizes by computing p = pn(r) for all candidate r. By construction,
p2− 1 has guaranteed n+1

n (log(p)− 1)+ 2 bits of smoothness. We then require that the remaining

4At the time of writing, [126] was the most promising iteration of SQIsign.

214

factors have at least

max

(
0,

3

2
log p−

(
n+ 1

n
(log p− 1) + 2

))
bits of B-smoothness. In Section 10.4.2, we will discuss the probability obtaining this smoothness
from the remaining factors.

10.4.1 Choosing n

For small n, we require CHM to find twin smooths of large bit size. For certain bit sizes, running
full CHM may be computationally out of reach, and therefore we use a variant that may not find all
twins. In this case, however, we have more guaranteed smoothness in p2−1 and so it is more likely
that the remaining factors will have the required smoothness. For large n, we can obtain more
twin smooths from CHM (in some cases, we can even exhaustively search for all twin smooths),
however we have less guaranteed smoothness in p2− 1. Finding values of n that balance these two
will be the focus of this section.

n = 2. Let (r, r±1) be twin smooth integers and let p = 2r2−1. In this case, 2r2(r±1) | T ′, meaning
that log T ′ ≥ 3

2 log p, and we have all the required smoothness. Write T ′ = 2fT = 2r2(r±1) where
T is odd. If f ≈ ⌊ 14 log p⌋, we have T ≈ p5/4, and we do not have to rely on a large power of 2
dividing r ∓ 1. Otherwise, we turn to Section 10.4.2 to estimate the probability of r ∓ 1 having
enough small factors to make up for this difference.

Suppose we target primes with λ bits of classical security, i.e., we need a prime of order p ≈ 22λ.
For n = 2, this corresponds to finding twin smooths of size ≈ 2λ−

1
2 , and so is only suitable for

finding NIST Level I parameters due to the limitations of the CHM method (see Section 10.3).
One could instead use other techniques for finding large enough twins for n = 2, such as the PTE
sieve [105], at the cost of significantly larger smoothness bounds. Alternatively, we can move to
higher n, which comes at the cost of loosing guaranteed smoothness. Another challenge here is
that, given the relatively large size of the twins, it appears difficult to find enough twins to obtain
primes with a large power of two.

n = 3. Let (r, r− 1) be twin smooth integers and let p = 2r3− 1. Here, we can guarantee that the
smooth factor T ′ of p2−1 is at least of size ≈ p4/3. If f < ⌊ 1

12 log p⌋, we have T > p5/4. Otherwise,
we require that there are enough smooth factors in r2 + r + 1 to reach this requirement.

Here, for λ bits of classical security, we need to target twin smooth integers of size ≈ 2
2λ−1

3 .
In this case, the CHM method will (heuristically) allow us to reach both NIST Level I and III
parameters.

n = 4. Let (r, r ± 1) be twin smooth integers and p = 2r4 − 1. Here we can only guarantee a
factor of size ≈ p5/4 of p2 − 1 to be smooth. When accounting for the power of two, we must
hope for other smooth factors. As pn(x) − 1 splits into (relatively) small degree factors, namely
pn(x)− 1 = 2(x− 1)(x+ 1)(x2 + 1), the probability of having enough B-smooth factors is greater
than if there was, for example, a cubic factor.

In contrast to the previous cases, this setting should be suitable for targeting all necessary
security parameters. However, for the NIST Level I setting, the work by De Feo, Leroux, Longa,

215

and Wesolowski [126, §5.2] showed that the best one could hope for here while maximising the
power of two gives SQIsign parameters with a smoothness bound of around 1800. While this is a
better smoothness bound than the NIST Level I prime with the best performance for SQIsign, it
does not perform as well in practice. Indeed, most of the odd primes less than 1800 that appear
in p2 − 1 are relatively large, making isogeny computation relatively slow. In the best performing
prime, however, a large power of 3 divides p2 − 1, and most of its other odd prime divisors are
fairly small. We note that the authors of [126] only searched for parameters that maximise the
power of two, and hence there could be some scope to find parameters that have slightly smaller
powers of two.

Other n. For larger n, the amount of guaranteed smoothness decreases, and thus the probability
that the remaining factors have the required smoothness is small. Indeed, we find that only n = 6

has the correct balance of requiring small twin smooths while still having a reasonable probability of
success. This is primarily due to the factorisation of p26(x)−1 = 2(x−1)(x+1)(x2−x+1)(x2+x+1),
having factors of degree at most 2, which improves the probability that we have enough smooth
factors. In contrast, n = 5 results in more guaranteed smoothness than n = 6, but requires the
quartic factor in p25(x)− 1 to provide the necessary smoothness, which is relatively unlikely.

While one could use n = 6 to find NIST Level I parameters, this larger n shines in its ability
to give us both NIST Level III and V parameters.

10.4.2 Probability of sufficient smoothness

We determine the probability of obtaining cryptographic primes with sufficient smoothness using
the methods outlined above. Following Banks and Shparlinski [15], we determine the probability
of p2−1 being sufficiently smooth for some prime p. More precisely, given that the factor r(r±1) |
p2− 1 is already fully smooth, we want to calculate the probability of p2− 1 having log(T ′)-bits of
B-smoothness.

First, we find the probability that the factor r(r±1) | p2−1 is fully smooth, i.e., the probability
of finding fully B-smooth twins (r, r ± 1). To do so, we use the following counting function:

Ψ(X,B) = #{N ≤ X : N is B-smooth}.

For a large range of X and B, it is known that

Ψ(X,B) ∼ ρ(u)X,

where u = (logX)/(logB) and ρ is the Dickman function [55, 134]. The Dickman function is
implemented in most computational algebra packages, including SageMath [311], which allows us
to evaluate Ψ(X,B) for various X and B. In practice, we find B-smooth twins (r, r± 1) using our
implementation of the CHM algorithm as described in Section 10.3.

Next, we calculate the probability of p2 − 1 having log(T ′)-bits of B-smoothness. As p2 − 1

may only be partially smooth, we will use the following counting function

Θ(X,B,D) = #{N ≤ X : D < largest B-smooth divisor of N}.

216

The value Θ(X,B,D) will give the number of positive integers N ≤ X for which there exists a
divisor d | N with d > D and such that d is B-smooth. This function has been previously studied
in the literature, for example see [307, 308]. For X,B,D varying over a wide domain, Banks and
Shparlinski [15, Theorem 1] derive the first two terms of the asymptotic expansion of Θ(X,B,D).
By implementing this expansion, we are able to estimate the value of Θ at various X,B,D in the
correct range.

As discussed in the section above, we restrict to n = 2, 3, 4, 6. Recall that pn(x)2 − 1 =

4xn(x − 1)f(x), as given in Table 10.2 for each 2 ≤ n ≤ 6. Write f(x) = f1(x) · · · fk(x), where
each fi is irreducible of degree di = deg(fi) and d = deg(f). To calculate the probabilities, we
assume that the probability of f(x) having at least log(D)-bits of B-smoothness is the product
of the probabilities of each of its factors fi having at least log(Di)-bits of B-smoothness where
log(D) =

∑k
i=1 log(Di). We can view this as an extension of Heuristic 1 in [105]. Note that the

only constraint on how the smoothness is distributed between the factors fi(x) is that the total
bit size of B-smooth factors must equal log(D). We could, for example, sum over all the possible
distributions of smoothness using the inclusion-exclusion principle. However, in distributions where
one of the factors has a very small amount of smoothness, we fall out of the ranges allowed as input
into the function Θ, as determined by [15, Theorem 1]. Therefore, for simplicity, we assume that
smoothness is distributed evenly between the remaining factors (weighted by the degree), i.e.,
log(Di) = (di log(D))/d. In reality, this only gives us a lower bound for the probability, but this
suffices for our purposes. Obtaining a more theoretical and accurate grasp on these probabilities
is left as an avenue for future research.

In Table 10.3, we give an overview of the relevant probabilities for NIST Level I, III, and V
parameters, calculated as described above. We observe that as n gets larger, the probability of
finding B-smooth integers of the appropriate bitsize increases. In contrast, for bigger n we are
guaranteed less smoothness in p2−1. As a result, given B-smooth twins, the probability of finding
a SQIsign prime p decreases as n increases. For each NIST level, we predict that the n that balance
these two contrasting probabilities have a higher chance of finding a p satisfying our requirements.
As discussed in the next section, this trend is reflected in practice.

10.5 Results and comparisons

In this section we give the concrete results that were obtained from our experiments with the CHM
algorithm, and analyse the various twins in relation to SQIsign in accordance with the relevant
bitsizes mentioned in Table 10.3.

10.5.1 Record twin smooth computations

We ran the optimised full CHM algorithm with B = 547 and found a total of 82,026,426 pairs of
B-smooth twins. Among these pairs, we found 2,649 additional 200-smooth twins that were not
found by the original authors of the algorithm [86]. This showcases the validity of Remark 10.2.3
that the algorithm does not guarantee us to find all B-smooth twins. Furthermore, there is no
guarantee that running CHM with B = 547 will produce all 200-smooth twins. As mentioned in

217

n log(r)
Probability of B-smooth

(r, r ± 1)

Probability of p2 − 1

log T ′-bits B-smooth given
(r, r ± 1) twin smooth

Extra Smoothness
Needed

NIST-I
B = 29

log p = 256

log T ′ = 384

2 ≈ 127.5 2−58.5 1 0
3 ≈ 85.0 2−32.1 2−8.4 42
4 ≈ 63.8 2−20.5 ≈ 2−12.7 63.3
6 ≈ 42.5 2−10.4 ≈ 2−16.8 84.5

NIST-III
B = 214

log p = 384

log T ′ = 576

2 ≈ 191.5 2−55.7 1 0
3 ≈ 127.7 2−30.5 2−8.2 63.3
4 ≈ 95.8 2−19.4 ≈ 2−12.4 95.3
6 ≈ 63.8 2−9.7 ≈ 2−16.2 127.2

NIST-V
B = 217

log p = 512

log T ′ = 768

2 ≈ 255.5 2−63.7 1 0
3 ≈ 170.3 2−35.2 2−9.6 84.7
4 ≈ 127.8 2−22.6 ≈ 2−14.5 127.3
6 ≈ 85.2 2−11.5 ≈ 2−19.2 169.8

Table 10.3: Assuming that (r, r ± 1) are twin smooth integers and p has log p bits, calculates the
probability of having a B-smooth divisor T ′ | p2 − 1 of size ≈ p3/2. More details in text.

the introduction, the only way to see how far away we are from the exact number of 200-smooth
twins is to solve all 246 Pell equations.

For the application mentioned in the previous section, we only need twins of a certain bitsize.
Within this set of twins, 9,218,648 pairs (r, r + 1) fall in the range 260 < r < 264; 1,064,249 pairs
fall in the range 281 < r < 285; 31,994 pairs fall in the range 292 < r < 296; and, only 1 pair falls
in the range 2120 < r < 2128. This pair in the final interval is the largest pair found in this run,
with r = 4012031241848866526424165796047749375, and factorisations:

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283

· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

As we will see later, the number of 64-bit and 85-bit twins we found in this run is enough to
find attractive parameters for SQIsign. The 96-bit twins will give us parameters with the required
smoothness, however we do not have enough pairs to hope to find a prime p where p2−1 is divisible
by a large power of two.

Table 10.3 shows that finding many twins of around 128 bits in size is likely to be fruitful
in the search for SQIsign-friendly parameters, so we ran the algorithm for B = 1300 using the
constant-range optimisation with a range R = 5000, in order to specifically target twins (r, r+1)

with r > 2115. In this run we found 1,091 such pairs - the largest of these pairs is the following
145-bit twin (r, r + 1) with r = 36132012096025817587153962195378848686084640, where

218

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251 · 283 · 307

· 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Among the 1,091 twins CHM found, 184 pairs fall in the range 2120 < r < 2128, which was sufficient
to find some SQIsign-friendly parameters (though not at all NIST security levels).

In addition, we also ran CHM with B = 211 to obtain a large number of twin smooth integers in
the range 255 < r < 2100 (see Remark 10.3.6 in the setting where we want to find twins in such an
interval). This run was performed using the constant-range optimisation with a range R = 2500,
and produced 608,233,761 pairs of twins lying in this range. Compared with the B = 547 run,
the yield from this run gave ample twins with 292 < r < 296, which was sufficient to find SQIsign
parameters with the desirable large power of two.

All of these searches were done using the machine specified in Section 10.3.3, taking between 1
and 2 days each to run.

10.5.2 Concrete parameters for SQISign

We give a list of SQIsign-friendly primes that target NIST Level I, III, and V, i.e, we find primes
p with 2fT | p2 − 1 and T odd. We need the exponent f to be as large as possible and the
cofactor T ≈ p5/4 to be B-smooth, aiming to keep the ratio

√
B/f as small as possible; this

quantity is a rough cost metric for the performance of the signing algorithm in SQIsign [126, §5.1].
To complement this, the exponent f controls the performance of the verification of SQIsign; the
larger this exponent is, the faster the verification is. We may run into circumstances where the
signing cost metric is minimised, but the power of two is not large enough or vice-versa. We aim to
balance these as much as possible, thus finding parameters that maximise the power of two while
minimising the signing cost metric. We refer to Section 10.5.3 for more details on the practicability
of our parameters.

Though we need T ≈ p5/4, if this cofactor is too close to p5/4, then the underlying heuristics
within the generalised KLPT algorithm might fail and one cannot guarantee a successful signature
in SQIsign [126, §3.2]. Thus, in practice we need T ≈ p5/4+ϵ for some small ϵ (e.g., 0.02 < ϵ < 0.1).

We find parameters for NIST Level I, III and V by searching for 256, 384 and 512-bit primes,
respectively. For those primes targeting the higher security levels, these are the first credible
SQIsign-friendly primes. In what follows, we look at each security level and analyse the most
noteworthy primes found in our searches. From here on out, when stating the factorisations of
p ± 1 for the mentioned primes, the factors in bold are the rough factors which are not needed
for SQIsign, while the other factors are the smooth factors of T . A full collection of our best
SQIsign-friendly primes that were found using the CHM machinery is showcased in Table 10.4.

Remark 10.5.1. We note that in all of the forthcoming searches, the post-processing of the CHM
twins to find the SQIsign-friendly parameters can be made reasonably efficient with straightforward
techniques. In particular, the runtime is negligible in comparison to running the CHM searches
mentioned in Section 10.5.1 and can be done using naïve trial division.

219

NIST-I5 parameters. We targeted 256-bit primes using n = 2, 3 and 4. Given that our CHM
runs produced a lot more twins of smaller bit-size compared to the 128-bit level, we expect to find
more primes using n = 3, 4, which was indeed the case. It is worth noting that some primes found
with n = 2 gave rise to p2 − 1 being divisible by a relatively large power of two. However, in these
cases, most of the primes dividing p2−1 are relatively large and would therefore give rise to slower
isogeny computations during the SQIsign protocol [126].

Through the experimentation with the 85-bit twins produced from CHM with B = 547, we
found the following 254-bit prime p = 2r3 − 1 with r = 20461449125500374748856320. All the
specific criteria that we need for a SQIsign parameter set are met, while obtaining an attractively
small signing cost metric

√
B/f . For this prime, we have

p+ 1 = 246 · 53 · 133 · 313 · 733 · 833 · 1033 · 1073 · 1373 · 2393 · 2713 · 5233, and

p− 1 = 2 · 33 · 7 · 112 · 172 · 19 · 101 · 127 · 149 · 157 · 167 · 173 · 199 · 229 · 337

· 457 · 479 · 141067 · 3428098456843 · 4840475945318614791658621.

While the associated cofactor T here exceeds p5/4, it does not exceed it by much. As we men-
tioned earlier, it might therefore be prone to signing failures and hence might not currently
be suitable for SQIsign. The next 255-bit prime worthy of mention, p = 2r3 − 1 with r =

26606682403634464748953600, is very similar to the previous prime, however the cofactor T exceeds
p5/4 by a larger margin, so would be less prone to these failures. In this case we have

p+ 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and

p− 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311 · 397 · 547

· 1015234718965008560203 · 3143438922304814418457.

We additionally ran experiments with the 64-bit twins produced from CHM with B = 547 and
found a 253-bit prime p = 2r4 − 1 with r = 8077251317941145600, where we have

p+ 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and

p− 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313 · 347 · 397

· 467 · 479 · 991 · 1667 · 19813 · 211229 · 107155419089

· 295288804621.

Among all the primes that we found for NIST-I security, this appears to be the best. It has
both a larger power of two compared to the primes mentioned above found with n = 3 and a
smaller smoothness bound, thus making the signing cost metric attractively small. Additionally,
the cofactor T is large enough to be practical for SQIsign without any failures. We note once again
that this prime would have been out of scope for the authors of [126] to find since they constrained
their search to only find primes for which the power of two is larger than the one found here.

NIST-III parameters. We targeted 384-bit primes using n = 3, 4 and 6. The challenge in all
three of these scenarios is finding enough twins whose product is divisible by a large power of two.

5NIST Level I, III, and V parameters are also referred to as NIST-I, NIST-III, NIST-IV parameters.

220

With the limited yield of 128-bit twins, finding such primes is not straightforward; the example with
n = 3 in Table 10.4 is the only such instance that we managed to find. The picture is somewhat
similar with the 96-bit twins: while we have more of them, the success probabilities in Table 10.3
suggest that we need a lot more twins with a large power of two in order to produce any SQIsign-
friendly instances. One exceptional prime that was found in this search was the following 375-bit
prime, p = 2r4 − 1 with r = 12326212283367463507272925184. Here, we have

p+ 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914 · 13194, and

p− 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283 · 353 · 419

· 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · 522673 · 3881351

· 4772069 · 13468517 · 689025829 · 30011417945673766253.

Of the NIST Level III primes listed in Table 10.4, the prime that shows the most promise is
the 382-bit prime p = 2r6 − 1 with r = 11896643388662145024. Not only is the power of two
particularly large, but also the smoothness bound of the cofactor T is quite small, reflected in its
small signing cost metric (when compared to other p where p2 − 1 is divisible by a large power of
2). We have the factorisations

p+ 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and

p− 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349 · 449

· 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119 · 10243 · 381343

· 19115518067 · 740881808972441233 · 83232143791482135163921.

NIST-V parameters. We targeted 512-bit primes using n = 4 and 6. Once again, combining
our CHM runs with n = 6 proved to be the best option for finding SQIsign parameters at this
level. None of the twins found at the 128-bit level combined with n = 4 to produce any SQIsign
friendly primes. From the set of 85-bit twins found in the B = 547 CHM run, the 510-bit prime
p = 2r6 − 1 with r = 31929740427944870006521856 is particularly attractive. The power of two
here is the largest found from this run. We have

p+ 1 = 291 · 196 · 616 · 896 · 1016 · 1396 · 1796 · 2236 · 2396 · 2516 · 2816, and

p− 1 = 2 · 32 · 5 · 7 · 13 · 23 · 29 · 31 · 41 · 53 · 109 · 149 · 157 · 181 · 269 · 317 · 331

· 463 · 557 · 727 · 10639 · 31123 · 78583 · 399739 · 545371 · 550657 · 4291141

· 32208313 · 47148917 · 69050951 · 39618707467 · 220678058317

· 107810984992771213 · 1779937809321608257.

The 85-bit twins found in the CHM run with B = 211 were used to try to find NIST-V parameters.
The largest power of two that was found in this run which is suitable for SQIsign was f = 109.
The prime with smallest signing cost metric while having a relatively large power of two is the

221

following 508-bit prime, p = 2r6 − 1 where r = 26697973900446483680608256. Here, we have

p+ 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and

p− 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277 · 347 · 617

· 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139 · 143443 · 150151 · 3813769

· 358244059 · 992456937347 · 353240481781965369823897507

· 8601020069514574401371658891403021.

10.5.3 Performance estimates

We would ideally implement our primes using the SQIsign code provided in [126] to determine how
well these parameters perform in practice. However, the current implementation is specifically
tailored towards the particular primes that are being used, and is limited to NIST-I parameter
sizes. Including our NIST-I primes from Table 10.4 results in failures during key generation,
which seem to stem from using parameters with different powers of two. Thus, implementing and
benchmarking our parameters would require a major rework of the provided code, which is out of
the scope of this work.

NIST-I. The state-of-the-art implementation of SQIsign uses a 254-bit prime that was found
using the extended Euclidean algorithm (XGCD) [99, 125] (see Section 10.1). With this method,
it is possible to, for example, force p ± 1 and p ∓ 1 to be divisible by a large power of 2 and 3

(respectively). Indeed, with this approach, a smooth factor of size ≈ √p comes for free in both
p± 1. Concretely, the prime p3923 used in [126] is of bitsize 254 and has f = 65 and B = 3923:

p+ 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521 · 3923 · 62731

· 96362257 · 3924006112952623, and

p− 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599 · 607 · 619

· 743 · 827 · 941 · 2357 · 10069.

As this prime is not constructed by boosting twin-smooth integers (r, r ± 1), we do not display it
in Table 10.4. For comparison with other primes, we provide details of p3923:

√
B/f = 0.96 and

logp(T) = 1.32.
The primes from Table 10.4 provide various alternatives for NIST-I parameters, and we can

give simplified estimates for their performance in comparison to p3923. As an example, we will
consider p479, the 253-bit prime from Table 10.4 having B = 479. With f = 49, it features a
slightly smaller power of two compared to p3923 with f = 65. This means that we would have to
verify the signature isogeny in 21 blocks of 249-isogenies, instead of 16 blocks of 265-isogenies for
p3923. Given that the computational bottleneck for this is the generation of the respective kernel
points per block, and ignoring the savings of computing 249-isogenies instead of 265-isogenies and
the relatively cheap recomputation of the challenge isogeny, this results in an estimated slowdown
of roughly 21/16 ≈ 1.31. Thus, we expect a modest slowdown from a verification time of 6.7ms
(see [126]) to roughly 8.8ms on a modern CPU.

222

Security
level

n r ⌈log(p)⌉ f B
√
B/f logp(T)

NIST-I

2 1211460311716772790566574529001291776 241 49 1091 0.67 1.28

2 2091023014142971802357816084152713216 243 49 887 0.61 1.28

3 3474272816789867297357824 246 43 547 0.54 1.29

3 10227318375788227199589376 251 31 383 0.63 1.31

3 21611736033260878876800000 254 31 421 0.66 1.28

3 20461449125500374748856320 254 46 523 0.50 1.26

3 26606682403634464748953600 255 40 547 0.58 1.28

4 1466873880764125184 243 49 701 0.54 1.28

4 8077251317941145600 253 49 479 0.45 1.30

4 12105439990105079808 255 61 1877 0.71 1.31

4 13470906659953016832 256 61 1487 0.63 1.30

NIST-III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4 5139734876262390964070873088 370 45 11789 2.41 1.26

4 12326212283367463507272925184 375 77 55967 3.07 1.31

4 18080754980295452456023326720 377 61 95569 5.07 1.26

4 27464400309146790228660255744 379 41 13127 2.79 1.29

6 2628583629218279424 369 73 13219 1.58 1.27

6 5417690118774595584 375 79 58153 3.05 1.27

6 11896643388662145024 382 79 10243 1.28 1.30

12 5114946480 [128] 389 49 31327 3.61 1.30

NIST-V

6 9469787780580604464332800 499 109 703981 7.70 1.25

6 12233468605740686007808000 502 73 376963 8.41 1.28

6 26697973900446483680608256 508 85 150151 4.56 1.26

6 31929740427944870006521856 510 91 550657 8.15 1.25

6 41340248200900819056793600 512 67 224911 7.08 1.28

Table 10.4: A table of SQIsign parameters p = pn(r) for twin-smooth integers (r, r±1) found using CHM
at each security level. The f is the power of two dividing (p2 − 1)/2 and B is the smoothness bound of
the odd cofactor T ≈ p5/4. It also includes existing primes in the literature.

223

However, we expect a significant speed-up for signing. The computational bottleneck during
the signature generation is the repeated computation of T -isogenies; one computes two T -isogenies
per block of 2f -isogenies in the verification. Since the T -isogeny computation is dominated by its
largest prime factor B, and its cost can be estimated by

√
B, the ratio of the signing cost metrics√

B/f from Table 10.4 reflects the overall comparison. Given this metric, we expect a speed-up
factor of roughly 0.45/0.96 ≈ 0.47. For the running time, this would mean an improvement from
424ms (see [126]) to roughly 199ms on a modern CPU.

We can also consider a different cost-estimate, given by summing the cost
√
ℓi for the five

biggest (not necessarily distinct) prime factors ℓi | T , before dividing by f . The advantage of
considering more factors of T is that it constitutes a larger portion of the time it takes to compute
a T -isogeny, while the disadvantage is that the cost

√
ℓ becomes increasingly inaccurate for smaller

prime factors ℓ. In this metric, the speed-up is smaller, but is still significant. Specifically, we
expect a speed-up factor of roughly 2.19/3.04 ≈ 0.72, which would result in an improvement from
424ms to roughly 305ms.

In a nutshell, even though we can only give rough estimates for running times, we expect our
NIST-I parameters to achieve much better signing times due to the smaller smoothness bounds B,
at the cost of a very modest slowdown for verification due to slightly smaller values of f . In the
light of the relatively slow signing times in SQIsign, this option seems worthwhile for applications
that require faster signing.

NIST-III and -V. As mentioned earlier, our work showcases the first credible primes for SQIsign
at the NIST-III and NIST-V security level. A beneficial feature about most of the primes found
in Table 10.4 is that the majority of the smooth factors are relatively small (e.g. B < 210). In
comparison, we expect the XGCD method to scale worse for larger security levels, i.e., requiring
much larger smoothness bounds. This is similar to the analysis in [105], which shows that while the
XGCD approach has reasonable smoothness probabilities for NIST-I parameters, other methods
become superior for larger sizes.

We note that there are other 384 and 512-bit primes in the literature for which p2−1 is smooth
[105, 128]. None of the primes from [105] have a large enough power of two for a suitable SQIsign
application. Some primes were found in the context of the isogeny-based public-key encryption
scheme Séta [128] that could be suitable for SQIsign. As part of their parameter setup, they required
finding ≈ 384-bit primes, satisfying some mild conditions outside just requiring p2−1 to be smooth.
Of the 7 primes that they found, the 389-bit prime, p = 2r12 − 1 with r = 5114946480 appears to
be somewhat SQIsign-friendly achieving NIST-III security (see Table 10.4). However, in addition
to its worse signing metric, representations of Fp-values require an additional register in this case
compared to our primes of bitlengths slightly below 384. Thus, we can expect implementations of
Fp-arithmetic to perform significantly worse for this prime.

Remark 10.5.2. The requirement we impose on p2 − 1 being divisible by 2f · T is to ensure
that it fits within the current implementation of SQIsign. At present, the SQIsign implemen-
tation has a fine-grained optimisation of their ideal-to-isogeny algorithm to the setting with
ℓ = 2. In general, one could instead allow p2 − 1 to be divisible by L · T , for a smooth num-
ber L with gcd(L, T) = 1. This could open new avenues to find SQIsign-friendly primes, but

224

would require a reconfiguration of the SQIsign code. For example, using the prime found with
r = 2091023014142971802357816084152713216 from Table 10.4, we could use L = 249 ·34 ·5 | p2−1
and still have a large enough smooth factor T to exceed p5/4, thereby further minimising the ex-
pected slowdown for verification.

Remark 10.5.3. The focus of this work has been on finding parameters for SQIsign but there are
other isogeny-based cryptosystems that could benefit from such quadratic twist-style primes. While
traditional SIDH [123] is now broken, there have been proposed countermeasures [18, 19, 160] that
aim to thwart the attacks from [67, 227, 271]. Currently, these countermeasures use SIDH-style
primes, but could potentially benefit from quadratic twist-style primes like those explored in this
work for SQIsign. However, these countermeasures require primes of larger sizes, so it is unclear if
our CHM-based approach scales to these sizes, especially when aiming to balance the size of the
smooth cofactors of p+1 and p− 1. Nevertheless, our techniques might give a good starting point
for future research in this direction.

10.5.4 Other techniques for finding SQISign parameters

As seen in Section 10.1, we can collect twin smooth integers via different methods, and use them
as inputs to pn(x) to search for primes. Though these alternative methods are expected to have
greater smoothness bound, they have certain advantages. Namely, we are able to force larger
powers of 2 into p2 − 1 and search for twin smooths of large bitsizes (targeting NIST-III and -V).

Although we expect most primes in this section to perform worse when instantiated in SQIsign
compared to the primes from Section 10.5.2, their concrete performance can only be evaluated
by integrating them in the SQIsign software from [125, 126]. In this section, we present the best
primes found with each approach in the hopes that future implementations of SQIsign benefit from
a larger pool of potential primes to choose from. We give a list of these primes in Table 10.5.

XGCD twin smooths. For generating smaller twins, the XGCD approach can be used to yield
relatively high smoothness probabilities. Although this increases the smoothness bound compared
to CHM, we can choose smooth factors of roughly n bits combined when searching for n-bit twin
smooths. This allows us to force larger powers of 2.

As an example, the 261-bit prime p = 2r4−1 with r = 34848218231355211776 was found using
this approach. Here we have

p+ 1 = 277 · 320 · 234 · 1514 · 1574 · 2334 · 21534, and

p− 1 = 2 · 52 · 17 · 41 · 61 · 71 · 97 · 1012 · 113 · 137 · 257 · 263 · 313 · 353 · 547 · 853

· 1549 · 2017 · 2081 · 2311 · 3019 · 24989 · 58601 · 5511340166779281313.

This prime is similar to the primes found in [126], giving a smaller smoothness bound and a larger
power of 2 compared to the state-of-the-art. However, it exceeds the size of 256 bits, and thus
we expect it to perform significantly worse due to the fact that representations of values in Fp
require an additional register in this case. Additionally, a large majority of the factors in p2 − 1

are relatively large, making isogeny computations rather slow. This is consistent with the primes
in [126].

225

Remark 10.5.4. This approach is revisited in joint work with Eriksen, Meyer and Rodríguez-
Henríquez [277] and was used to find parameters for the NIST submission of SQIsign.

PTE twin smooths. As the number of 128-bit twins that were found using CHM is relatively
small, in some cases we were not able to find suitable SQIsign parameters. This mainly concerns
the setting where we take n = 4 to find NIST-V parameters, for which data from the CHM run
with B < 1300 did not yield any NIST-V SQIsign-friendly instances.

To find more large twins, we can use the PTE approach [105] (see Section 10.1) to find 214-
smooth 128-bit twins, sacrificing the smaller smoothness bounds that were used during our CHM
runs. In total, we found 3,648 such 128-bit twins that resulted in a prime of the form p = 2r4−1. Of
these, two primes show strong potential to be used in SQIsign and are thus also given in Table 10.4.

Larger values of n. We could also consider finding primes of the form p = 2rn − 1 for larger
values of n, where the only restriction is that r is a smooth number. Compared to the previous
ideas this restriction decreases the amount of guaranteed smoothness, but if n is chosen carefully
then we can obtain increased smoothness probabilities. The polynomial pn(x)2−1 is highly related
to the cyclotomic polynomials Φd for d | n as

pn(x)
2 − 1 = 2xn(2xn − 2) = 4xn(xn − 1) = 4xn

∏
d|n

Φd.

Recall that Φd is an irreducible polynomial of degree ϕ(d), where ϕ denotes Euler’s totient function.
Therefore, the largest irreducible factor of pn(x)2−1 is of degree ϕ(n). This in turn means that the
largest factor that p = 2rn − 1 can possibly have is around the size of rϕ(n) ≈ pϕ(n)/n. Therefore,
we would like to minimise the value ϕ(n)/n.

As we allow n to increase, this value can get arbitrarily low. Indeed, setting n = Pk, where Pk
denotes the k-th primorial,6 we find that

ϕ(Pk)

Pk
=

k∏
i=1

pi − 1

pi
=

k∏
i=1

(
1− 1

pi

)
,

and as k tends towards infinity, we see that

lim
k→∞

ϕ(Pk)

Pk
=

∞∏
i=1

(
1− 1

pi

)
=

1

ζ(1)
,

where ζ(s) denotes the Riemann-Zeta function, which has a pole at s = 1.
However, we cannot allow n to become too large as we still need a sufficiently large range of

inputs, so that there exists a smooth r such that 2rn − 1 is prime. Therefore, consider a bound
n < Bn where Bn is chosen such that we still have a large enough search space. Based on the
multiplicative property of the totient function, the fact that ϕ(q) = q − 1 when q is prime, and
that

ϕ(n)

n
=
ϕ(rad(n))

rad(n)
,

6The k-th primorial Pk is defined as the product of the first k primes.

226

where rad(n) is the product of all distinct primes dividing n, the optimal choices of n are in the
set

{2e13e2 . . . pekk < Bn | Pk < Bn < Pk+1, ei ≥ 1}.

As an example, we look for NIST-V parameters p ∈ [2500, 2512]. If we want at least a range of size
225 such that 2rn − 1 ∈ [2500, 2512], we see that we have to have n < Bn = 20. Therefore, our set
of optimal choices of n becomes

n ∈ {2 · 3, 22 · 3, 2 · 32} = {6, 12, 18}.

Using n = 6, the range of suitable r-values becomes large enough that we cannot search through
all of them. Thus, searches would require further restrictions on the suitable r-values, such as only
considering twin-smooths.

For n ∈ {12, 18}, we can exhaust the full search space, and obtain several promising candidates.
These are included in Table 10.4. Among all of these, the 510-bit prime p = 2r12 − 1 with
r = 5594556480768 seems very suitable for NIST-V. It has a low cost factor and has a large power
of three, which could be beneficial for SQIsign implementations. Here we have

p+ 1 = 297 · 360 · 23912 · 57112 · 65912, and

p− 1 = 2 · 52 · 7 · 132 · 17 · 19 · 43 · 83 · 103 · 109 · 1392 · 151 · 223 · 277 · 317 · 1249

· 1373 · 2311 · 3067 · 4133 · 28279 · 28447 · 40087 · 60089 · 69073 · 88469

· 2226517 · 5856073 · 6242671 · 14237127193 · 25752311173

· 63101553683977 · 38380249844433998662503841.

Security
level

n r ⌈log(p)⌉ f B
√
B/f logp(T)

NIST-I 4 34848218231355211776 261 77 2311 0.62 1.30

NIST-III 12 2446635904 376 85 9187 1.13 1.29

NIST-V

4

4

114216781548581709439512875801279791104

123794274387474298912742543819242587136

507

508

65

41

75941

15263

4.24

3.01

1.26

1.29

12 5594556480768 510 97 88469 3.07 1.29

18 335835120 511 73 24229 2.13 1.29

Table 10.5: A table of SQIsign parameters p = pn(r) found using twin-smooth integers (r, r ± 1) at
each security level. The twins used here were not found using CHM. The other quantities are just as
in Table 10.4.

Remark 10.5.5. Unlike the CHM method and other similar methods, we cannot generate more
values to input into this technique, as the amount is small enough to quickly exhaust the full search
space. This is in stark contrast to CHM, which, given more computing power, could potentially
generate more twin smooths of given sizes to give new suitable SQIsign parameters. Hence, we
conclude that the CHM method with smaller values of n will ultimately give rise to new, better

227

SQIsign parameters than the ones found with the larger values of n.

228

Chapter 11

Faster verification for SQIsign

In this chapter, we aim to accelerate SQIsign verification as much as possible, and are willing to
accept a decrease in the efficiency of signing. In this way, we focus on applications that require fast
verification and small signatures. Unlike in the previous Chapter 10, where we fix signing to be
performed over Fp2 for efficiency, in this chapter we instead maximise the efficiency of verification
by allowing signing to occur over an extension field of Fp2 . This chapter presents joint work with
Jonathan Komada Eriksen, Michael Meyer, and Krijn Reijnders entitled

AprèsSQI: Extra Fast Verification for SQIsign Using Extension-Field Signing

as published at Eurocrypt 2024 [92], where it received the Best Early-Career Paper Award. The
software associated to this code was published as an artifact at Eurocrypt 2024 [93]. The only
differences between this chapter and the published paper arise from the correction of typographical
errors, the removal of superfluous preliminaries and moving the appendix to the body of the paper.

In light of recent work. Since the publication of the paper discussed in this chapter, an
impressive new variant of SQIsign has been developed: SQIsign2D [17, 142, 247]. It achieves similar
signature sizes to SQIsignHD, slower signing than SQIsignHD though faster than SQIsign, and the
faster verification than both SQIsign and SQIsignHD. In light of these advancements, it would be
interesting to understand in future work whether an optimised implementation of AprèsSQI in a
low-level programming language can still obtain the fastest verification to target applications where
verification time is key. Additionally, a new ideal-to-isogeny algorithm was introduced by Onuki
and Nakagawa [252] that uses two-dimensional isogenies. When applied to SQIsign, key generation
and the signing procedures are around twice as fast as those in the NIST submission for Level I
security, and there is no change to verification time. The advantage becomes greater for higher
security levels. It would be interesting to see the effect of combining this new ideal-to-isogeny
algorithm with the techniques developed in this chapter to accelerate SQIsign verification.

Introduction

SQIsign is most interesting in scenarios that require small signature sizes and fast verification,
particularly in those applications where the performance of signing is not the main concern. A few
common examples include long-term signatures, specifically public-key certificates, code updates
for small devices, authenticated communication with embedded devices or other microcontrollers
that solely run verification, and smart cards. For such use cases it is imperative to bring down the
cost of verification as much as possible.

229

The bottleneck of verification in SQIsign is the computation of an isogeny of fixed degree 2e with
e ≈ 15

4 log(p), where p denotes the prime one is working over, e.g. log(p) ≈ 256 for NIST Level I
security. However, the rational 2-power torsion, from here on denoted as the 2•-torsion, is limited,
since we work with supersingular elliptic curves over Fp2 of order (p+1)2 and (p− 1)2. This sets a
theoretical limit of 2log p for the 2•-torsion. Therefore, the verifier needs to perform several blocks
of degree 2• to complete the full 2e-isogeny, where each of these blocks involves costly steps such
as computing a 2•-torsion basis or isogeny kernel generator. Hence, in general, a smaller number
of blocks improves the performance of verification.

On the other hand, the bottleneck in signing is the computation of several T -isogenies for odd
smooth T ≈ p5/4. Current implementations of SQIsign therefore require T | (p − 1)(p + 1), such
that Fp2-rational points are available for efficient T -isogeny computations. The performance of
this step is dominated by the smoothness of T , i.e., its largest prime factor.

While this additional divisibility requirement theoretically limits the maximal 2•-torsion to
roughly p3/4, current techniques for finding SQIsign-friendly primes suggest that achieving this
with acceptable smoothness of T is infeasible [78, 86, 99, 105, 125]. In particular, the NIST
submission of SQIsign achieving Level I security uses a prime with rational 275-torsion and 1973

as largest factor of T . In this case e = 975, meaning that the verifier has to perform ⌈e/75⌉ = 13

costly isogeny blocks. Increasing the 2•-torsion further is difficult as it decreases the probability
of finding a smooth and large enough T for current implementations of SQIsign.

Contributions

In this work, we deploy a range of techniques to increase the 2•-torsion and push the SQIsign
verification cost far below the state of the art at the time of publication. Alongside these technical
contributions, we aim to give an accessible description of SQIsign, focusing primarily on verifica-
tion, which solely uses elliptic curves and isogenies and does not require knowledge of quaternion
algebras.

Even though we target faster verification, our main contribution is signing with field extensions.
From this, we get a much weaker requirement on the prime p, which in turn enables us to increase
the size of the 2•-torsion.

Focusing on NIST Level I security, we study the range of possible 2•-torsion to its theoretical
maximum, and measure how its size correlates to verification time. We do this using an implemen-
tation which uses an equivalent to the number of field multiplications as a cost metric. Compared
to the state of the art, increasing the 2•-torsion alone makes verification almost 1.7 times faster.
Further, we implement the new signing procedure as a proof-of-concept in SageMath and show
that signing times when signing with field extensions are in the same order of magnitude as when
signing only using operations in Fp2 .

For verification, in addition to implementing some known general techniques for improvements
compared to the reference implementation provided in the NIST submission of SQIsign, we show
that increasing the 2•-torsion also opens up a range of optimisations that were previously not
possible. For instance, large 2•-torsion allows for an improved challenge isogeny computation and
improved basis and kernel generation. Furthermore, we show that size-speed trade-offs as first
proposed by De Feo, Kohel, Leroux, Petit, and Wesolowski [125] become especially worthwhile

230

for large 2•-torsion. When pushing the 2•-torsion to its theoretical maximum, this even allows
for uncompressed signatures, leading to significant speed-ups at the cost of roughly doubling the
signature sizes.

For two specific primes with varying values of 2•-torsion, we combine all these speed-ups, and
measure the performance of verification. Compared to the implementation of the SQIsign NIST
submission [78], we reach a speed-up up to a factor 2.70 at NIST Level I when keeping the signature
size of 177 bytes. When using our size-speed trade-offs, we reach a speed-up by a factor 3.11 for
signatures of 187 bytes, or a factor 4.46 for uncompressed signatures of 322 bytes. Compared to
the state of the art [221], these speed-ups are factors 2.07, 2.38 and 3.41, respectively.

Related work

De Feo, Kohel, Leroux, Petit, and Wesolowski [125] published the first SQIsign implementation,
superseded by the work of De Feo, Leroux, Longa, and Wesolowski [126]. Subsequently, Lin,
Wang, Xu, and Zhao [221] introduced several improvements for this implementation. The NIST
submission of SQIsign [78] – SQIsign (NIST)– features a new implementation that does not rely
on any external libraries. Since this is the latest and best documented implementation, we will
use it as a baseline for performance comparison. Since the implementation by Lin, Wang, Xu,
and Zhao [221] is not publicly available, we included their main improvement for verification in
SQIsign (NIST), and refer to this as SQIsign (LWXZ).

Dartois, Leroux, Robert, and Wesolowski [116] recently introduced SQIsignHD, which massively
improves the signing time in SQIsign, in addition to a number of other benefits, but at the cost of
a slowdown in verification. This could make SQIsignHD an interesting candidate for applications
that prioritise the combined cost of signing and verification over the sole cost of verification.

Recent work by Eriksen, Panny, Sotáková, and Veroni [150] explored the feasibility of computing
the Deuring correspondence (see Section 3.2) for general primes p using higher extension fields. We
apply the same techniques and tailor them to specialised primes for use in the signing procedure
of SQIsign.

Outline

The rest of the chapter is organised as follows. Section 11.1 recalls the necessary background,
including a high-level overview of SQIsign. Section 11.2 describes how using field extensions in
signing affects the cost and relaxes requirements on the prime. Section 11.3 analyses how the size
of the 2•-torsion correlates to verification time. Section 11.4 presents optimisations enabled by
the increased 2•-torsion, while Section 11.5 gives further optimisations enabled by increased signa-
ture sizes. Finally, Section 11.6 gives some example parameters, and measures their performance
compared to the state of the art.

Availability of software

We make our Python and SageMath software publicly available under the MIT licence at

https://github.com/TheSICQ/ApresSQI.

231

https://github.com/TheSICQ/ApresSQI

11.1 Preliminaries

For this chapter, we require the preliminaries on elliptic curves, given in Section 2.2, and isogenies
between them from Section 2.8.1. As usual, we focus in particular on supersingular elliptic curves
defined over Fp2 , introduced in Sections 2.9 and 4.1. In this work, we accelerate verification
in the signature scheme SQIsign. As such, a reader should be familiar with the tools used to
construct SQIsign, most notably the Deuring correspondence in Section 3.2 and the generalised
KLPT algorithm from Section 5.1.1, and details on the signature scheme itself given in Section 5.2.
In SQIsign, we use supersingular elliptic curves in Montgomery form

EA : y2 = x3 +Ax2 + x = x(x− α)(x− 1/α)

for A,α ∈ Fp2 , to exploit fast x-only arithmetic.
The runtime of the best-known attacks against SQIsign, as given in Section 5.2.2.1, depends

only on the size of p. Furthermore, with high probability, they do not recover the original secret
isogeny, but rather a different isogeny between the same curves. Therefore, their complexity should
be unaffected by the changes we introduce to the SQIsign protocol in Section 11.2. Indeed, for these
attacks it does not matter whether the original secret isogeny had kernel points defined over a larger
extension field. In short, the changes to SQIsign in this chapter do not affect its security.

11.1.1 SQIsign-friendly primes

Next, we briefly recall details on the parameter requirements in SQIsign. We refer to Section 5.2.2.2
for a detailed description of their origins. For a security level λ, the following parameters are needed:

• A prime p of bitsize log(p) ≈ 2λ with p ≡ 3 mod 4.

• The torsion group E[2f] as large as possible, for E a supersingular elliptic curve defined over
Fp2 , that is 2f | p+ 1.

• A smooth odd factor T | (p2 − 1) of size roughly p5/4.

• The degree of φcom, Dcom | T , of size roughly 22λ ≈ p.

• The degree of φchall, Dchall | 2fT , of size roughly 2λ ≈ p1/2.

• Coprimality between Dcom and Dchall.

To achieve NIST Level I, III, and V security, we set the security parameter as λ = 128, 192, 256,
respectively. Concretely, this means that, for each of these security parameters, we have log(p) ≈
256, 384, 512, and log(T) ≈ 320, 480, 640, with f as large as possible given the above restrictions.
The smoothness of T directly impacts the signing time, and the problem of finding primes p with
a large enough T that is reasonably smooth is difficult. We refer to Chapter 10 or other recent
work on this problem [78, 99, 105, 125, 126, 277] for techniques to find suitable primes.

The crucial observation for this work is that T occupies space in p2 − 1 that limits the size of
f , hence current SQIsign primes balance the smoothness of T with the size of f .

232

Remark 11.1.1. SQIsign (NIST) further requires 3g | p+ 1 such that Dchall = 2f · 3g ≥ p1/2 and
Dchall | p+1. While this is not a strict requirement in the theoretical sense, it facilitates efficiency
of computing φchall. From this point on, we ensure that this requirement is always fulfilled.

Remark 11.1.2. Since the curves E and their twists Et satisfy

E(Fp2) ∼= Z/(p± 1)Z⊕ Z/(p± 1)Z and Et(Fp2) ∼= Z/(p∓ 1)Z⊕ Z/(p∓ 1)Z,

and we work with both simultaneously, choosing T and f is often incorrectly described as choosing
divisors of p2 − 1. There is a subtle issue here: even if 2f divides p2 − 1, E[2f] may not exist as
a subgroup of ⟨E(Fp2), ρ−1(Et(Fp2))⟩ ⊆ E(Fp4), where ρ : E → Et is the twisting isomorphism.
While this does not usually matter in the case of SQIsign (we pick 2f as a divisor of p+ 1, and T
is odd), this becomes a problem when working over multiple extension fields. In Section 11.2.2, we
make this precise and reconcile it using Theorem 11.2.3.

11.1.2 Computing rational isogenies from irrational generators

Finally, to facilitate signing with field extensions, we recall the techniques for computing Fp2 -
rational isogenies, i.e., isogenies defined over Fp2 , generated by irrational kernel points, that is,
not defined over Fp2 . In the context of this chapter, we again stress that such isogenies will only
be computed by the signer; the verifier will only work with points in Fp2 .

The main computational task of most isogeny-based cryptosystems (including SQIsign) lies in
evaluating isogenies given the generators of their kernels. Explicitly, given an elliptic curve E/Fq,
a point K ∈ E(Fqk) such that ⟨K⟩ is defined over Fq,1 and a list of points (P1, P2, . . . , Pn) in E, we
wish to compute the list of points (φ(P1), φ(P2), . . . , φ(Pn)), where φ is the separable isogeny with
kerφ = ⟨K⟩. Since we work with curves E whose p2-Frobenius π is equal to the multiplication-by-
(−p) map, every subgroup of E is closed under the action of the Galois group Gal(Fp/Fp2), hence
every isogeny from E can be made Fp2 -rational, by composing with the appropriate isomorphism.

Computing isogenies of smooth degree. Recall from Theorem 2.6.8 that the isogeny factors
as a composition of small prime degree isogenies, which we compute using Vélu-style algorithms.
For simplicity, for the rest of the section, we therefore assume that ⟨K⟩ is a subgroup of order
N > 2, where N is a small prime.

At the heart of these Vélu-style isogeny formulas is evaluating the kernel polynomial. Pick any
subset S ⊆ ⟨K⟩ such that ⟨K⟩ = S ⊔ −S ⊔ {∞}. Then the kernel polynomial can be written as

(11.1) fS(X) =
∏
P∈S

(X − x(P)).

Here, the generator K can be either a rational point, i.e., lying in E(Fq), or an irrational point,
i.e., lying in E(Fqk) for k > 1, but whose group ⟨K⟩ is defined over Fq. Next, we discuss how to
solve the problem efficiently in the latter case.

Irrational generators. For K /∈ E(Fq) of order N , we can speed up the computation of the

1That is, the group ⟨K⟩ is closed under the action of the Galois group Gal(Fq/Fq).

233

kernel polynomial using the action of Frobenius. This was used in two recent works [13, 150],
though the general idea was used even earlier by Tsukazaki [312].

As ⟨K⟩ is defined over Fq, we know that the q-power Frobenius π acts as an endomorphism
on ⟨K⟩ ⊆ E(Fpk) and so maps K to a multiple [γ]K for some γ ∈ Z. This fully determines the
action on ⟨K⟩, i.e., π|⟨K⟩ acts as P 7→ [γ]P for all P ∈ ⟨K⟩. For the set S as chosen above, this
action descends to an action on its x-coordinates XS = {x(P) ∈ Fqk | P ∈ S} and thus partitions
XS into orbits {x(P), x([γ]P), x([γ2]P), . . .} of size equal to the order of γ in (Z/NZ)×/{1,−1}.

If we pick one representative P ∈ S per orbit, and call this set of points S0, we can compute
the kernel polynomial in Equation (11.1) as a product of the minimal polynomials µx(P) of the
x(P) ∈ Fqk for these P ∈ S0, with each µx(P) defined over Fq, as

(11.2) fS(X) =
∏
P∈S0

µx(P)(X),

where µβ denotes the minimal polynomial of β over Fq.
To compute fS(α) for α ∈ Fq, we only require the smaller polynomial fS0

(X) and compute the
norm

NormF
qk
/Fq

(fS0(α)) =
∏
π∈G

π(fS0(α)) =
∏
P∈S0

∏
π∈G

(α− π(x(P))) =
∏
P∈S0

µx(P)(α),

where G = Gal(Fqk/Fq), as per Banegas, Gilchrist, Dévéhat, and Smith [13]. This allows us to
compute the image under fS of x-values of points in E(Fq), but only works for values in Fq. To
evaluate fS(α) for general α ∈ Fp, i.e., to compute the image of a point in E(Fp), we instead
compute the larger polynomial fS(X), where we use Shoup’s algorithm [290] to compute each
µx(P) given x(P). Computing fS(X) requires a total of O(ℓk) + Õ(ℓ) operations, with k such that
each x(P) ∈ Fqk . Evaluating fS at α takes Õ(ℓk′) operations, with k′ the smallest value such that
α ∈ Fqk′ [150, Section 4.3].

Remark 11.1.3. The biggest drawback to using this technique is that
√

élu is no longer practical.
If the kernel point P generating the isogeny is defined over Fp2ki , and we want to evaluate the
isogeny at a point Q defined over Fp2kj , we need to work in the smallest field where they are both
defined, namely the compositum F

p2 lcm(ki,kj) .

11.2 Signing with extension fields

By allowing torsion T from extension fields, we enable more flexibility in choosing SQIsign primes
p, thus enabling a larger 2•-torsion. Such torsion T requires us to compute rational isogenies
with kernel points in extension fields Fp2k . This section describes how to adapt SQIsign’s signing
procedure to enable such isogenies, and the increased cost this incurs. In particular, we describe two
approaches for T : allowing torsion T from a particular extension field Fp2k , or from all extension
fields Fp2n for 1 ≤ n ≤ k. The first approach means that we can look for T dividing an integer
of bit size Θ(k log p), and the second approach allows for Θ(k2 log p). In Section 11.3, we explore
how increased 2•-torsion affects the performance of verification.

234

11.2.1 Changes in the signing procedure

Recall from Section 5.2 that the signing operation in SQIsign requires us to work with both elliptic
curves and quaternion algebras, and to translate back and forth between these worlds. Note that the
subroutines that work solely with objects in the quaternion algebra Bp,∞, including all operations
in the KLPT variants used for key generation and signing, are indifferent to what extension fields
the relevant torsion groups lie in. Hence, a large part of signing is unaffected by torsion from
extension fields.

In fact, the only subroutines that are affected by moving to extension fields are those relying
on IdealToIsogenyD introduced in Section 3.2.1, which translates O0-ideals I of norm dividing D to
their corresponding isogenies φI . Following the discussion in Sections 3.2.2 and 5.2, IdealToIsogenyD
is not used during verification, and is used only in the following parts of signing:

Commitment: The signer translates a random ideal of norm Dcom to its corresponding isogeny,
using one execution of IdealToIsogenyDcom

.

Response: The signer translates an ideal of norm 2e to its corresponding isogeny, requiring 2⌈e/f⌉
executions of IdealToIsogenyT .

Remark 11.2.1. We choose parameters such that 2f | p+ 1 and Dchall | p+ 1, so that E[2f] and
E[Dchall] are defined over Fp2 . As a result, the verifier only works in Fp2 and the added complexity
of extension fields applies only to the signer.

Adapting ideal-to-isogeny translations to field extensions. To facilitate signing with field
extensions, we slightly adapt IdealToIsogenyD so that it works with prime powers separately. Note
that the additional cost of this is negligible compared to the cost of computing the isogeny from
the generators because finding the action of the relevant endomorphisms consists of simple linear
algebra. See Algorithm 11.1 for details.

Algorithm 11.1 IdealToIsogenyD(I)

Input: I, a left O0-ideal of norm dividing D.
Output: The corresponding isogeny φI .

1: Compute α such that I = O0⟨α,nrd I⟩
2: Let A = [1, i, i+j2 , 1+k2] denote a basis of O0

3: Compute vᾱ := [x1, x2, x3, x4]
T ∈ Z4 such that Avᾱ = ᾱ

4: for ℓe || D do
5: ᾱ|⟨Pℓe ,Qℓe ⟩ := x1I+ x2(i|⟨Pℓe ,Qℓe ⟩) + x3(

i+j
2 |⟨Pℓe ,Qℓe ⟩) + x4(

1+k
2 |⟨Pℓe ,Qℓe ⟩)

6: Let a, b, c, d be integers such that ᾱ|⟨Pℓe ,Qℓe ⟩ =

(
a b
c d

)
7: Kℓe := [a]Pℓe + [c]Qℓe

8: if ord(Kℓe) < ℓe then
9: Kℓe = [b]Pℓe + [d]Qℓe

10: end if
11: end for
12: Set φI to be the isogeny generated by the points Kℓe .
13: return φI

235

In Line 5 of Algorithm 11.1, the notation β|⟨Pℓe ,Qℓe ⟩ refers to the action of an endomorphism
β on a fixed basis Pℓe , Qℓe of E[ℓe]. This action is described by a matrix in M2(Z/ℓeZ). These
matrices can be precomputed, hence the only operations in which the field of definition of E[ℓe]

matters are the point additions in Lines 7 and 9, and isogenies generated by each Kℓe in Line 12.

11.2.2 Increased torsion availability from extension fields

We detail the two approaches to allow torsion groups from extension fields, which permits more
flexibility in choosing the final prime p.

Working with a single field extension of Fp2 . Although the choice of solely working in Fp2 oc-
curs naturally, as it is the smallest field over which every isomorphism class of supersingular elliptic
curves has a model, there is no reason a priori that this choice is optimal. Instead, we can choose to
work in the field Fp2k . We emphasise that this does not affect signature sizes; the only drawback is
that we now perform more expensive Fp2k -operations during signing in IdealToIsogeny. The upside,
however, is a relaxed prime requirement: we are no longer bound to E[T] ⊆ ⟨E(Fp2), ρ−1(Et(Fp2))⟩
and can instead use

E[T] ⊆ ⟨E(Fp2k), ρ−1(Et(Fp2k))⟩.

By Equations (4.1) and (4.2), we have E(Fp2k) ∼= E[pk ± 1] and Et(Fp2k) ∼= E[pk ∓ 1], thus we
simply get

E[T] ⊆ E
[
p2k − 1

2

]
,

since ⟨E[A], E[B]⟩ = E[lcm(A,B)]. Hence, by using torsion from E(Fp2k), we increase T | (p2−1)/2
to T | (p2k−1)/2. This implies there are 2(k−1) log(p) more bits available to find T with adequate
smoothness.

Working with multiple field extensions of Fp2 . Instead of fixing a single higher extension
field Fp2k , we can also choose to work with multiple field extensions, in particular all fields Fp2n ,
where 1 ≤ n ≤ k. The torsion group we can access by this relaxed requirement is described by the
following definition.

Definition 11.2.2. Let E be a supersingular elliptic curve over Fp2 and let Etn denote an arbitrary
quadratic twist of E over Fp2n with respect to the twisting isomorphism ρn : E → Etn. We define
the k-available torsion of E to be the group generated by E(Fp2n) and ρ−1

n (Etn(Fp2n)) for 1 ≤ n ≤ k.

Any point P in the k-available torsion can thus be written as a sum

P =

k∑
i=1

(Pi + ρ−1
i (P ti))

of points Pi ∈ E(Fp2i) and P ti ∈ Eti (Fp2i). Since the twisting isomorphism keeps the x-coordinate
fixed, the computation of this isomorphism ρi can be ignored when using x-only arithmetic, and
we simply obtain a sum of points whose x-coordinates lie in Fp2n for 1 ≤ n ≤ k. This justifies the
name k-available torsion, as we do not have to go beyond Fp2k to do arithmetic with P by working
with the summands separately.

236

The structure of the k-available torsion is completely captured by the following result.

Theorem 11.2.3. Let p > 2 be a prime, and let E/Fp2 be a supersingular curve with trπ = ±2p,
where π is the Frobenius endomorphism. Then the k-available torsion is precisely the group E[N]

with

N =

k∏
n=1

Φn(p
2)/2,

where Φn denotes the n-th cyclotomic polynomial.

We first give a proof of the following lemma.

Lemma 11.2.4. For any integer m ≥ 2, we have the following identity

lcm
(
{mn − 1}kn=1

)
=

k∏
n=1

Φn(m)

where Φn denotes the n-th cyclotomic polynomial.

Proof. We denote the left-hand side and right-hand side of the equation in the statement of the
lemma by LHS and RHS, respectively. We show that any prime power dividing one side, also
divides the other.

For any prime ℓ and e > 0, if ℓe divides the LHS, then, by definition, it divides mi − 1 =∏
d|iΦd(m) for some 1 ≤ i ≤ k. Hence, it also divides the RHS. Conversely, if ℓe divides the RHS,

then ℓe also divides the LHS. To show this, we need to know when Φi(m) and Φj(m) are coprime.
We note that

gcd(Φi(m),Φj(m)) | R

where R is the resultant of Φi(X) and Φj(X), and a classic result by Apostol [4, Theorem 4], tells
us that

Res(Φi(X),Φj(X)) > 1⇒ i = jm

for i > j and some integer m.
Using this, if ℓe divides the RHS, then it also divides the product

⌊k/d⌋∏
n=1

Φdn(m),

for some integer d, and this product divides the LHS, as it divides md⌊k/d⌋ − 1.

We can now conclude the proof of Theorem 11.2.3.

Proof. From the structure of E(Fp2n) (see Equation (4.1)), where E is as in the statement, the
k-available torsion can be seen as the group generated by the full torsion groups

E[pn ± 1]

for 1 ≤ n ≤ k. Using the fact that

⟨E[A], E[B]⟩ = E[lcm(A,B)],

237

we see that the k-available torsion is E[N] where

N = lcm
(
{pn − 1}kn=1 ∪ {pn + 1}kn=1

)
= lcm

(
{p2n − 1}kn=1

)
/2,

where the last equality only holds for p > 2. Applying Lemma 11.2.4 with m = p2, we obtain

N =

n∏
k=1

Φk(p
2)/2.

We find that using all extension fields Fp2n for 1 ≤ n ≤ k increases T | p2 − 1 to T | N , with N
as given by Theorem 11.2.3. Given that

logN =

k∑
n=1

log(Φn(p
2)/2) ≈ 2

k∑
n=1

ϕ(n) log(p),

and the fact that
∑k
n=1 ϕ(n) is in the order of Θ(k2), where ϕ denotes Euler’s totient function, we

find that T | N gives roughly k2 log p more bits to find T with adequate smoothness, compared to
the log(p) bits in the classical case of working over Fp2 , and k log(p) bits in the case of working
over Fp2k . Due to this, we only consider working in multiple field extensions from this point on.

11.2.3 Cost of signing using extension fields

In SQIsign, operations over Fp2 make up the majority of the cost during signing [126, Section 5.1].
Hence, we can roughly estimate the cost of signing by ignoring purely quaternionic operations,
in which case the bottleneck of the signing procedure becomes running IdealToIsogenyT as many
times as required by the IdealToIsogenyEichler algorithm from Section 3.2.2 in the response phase.
In other words, we estimate the total signing cost from the following parameters:

• f , such that 2f | p+ 1.

• T , the chosen torsion to work with.

• For each ℓeii | T , the smallest ki such that E[ℓeii] is defined over Fp2ki .

Since Algorithm 11.1 works with prime powers separately, we can estimate the cost of a single
execution by considering the cost per prime power.

Cost per prime power. For each ℓeii | T , let ki denote the smallest integer so that E[ℓeii] ⊆
E(Fp2ki), and let M(ki) denote the cost of operations in Fp2ki in terms of Fp2 -operations. Com-
puting the generator Kℓ

ei
i

consists of a few point additions in E[ℓeii], hence is O(M(k) · e log ℓ).
The cost of computing the isogeny generated by Kℓ

ei
i

comes from computing e isogenies of degree
ℓ at a cost of O(ℓk) + Õ(ℓ), using the techniques from Section 11.1.2.

To compute the whole isogeny, we need to push the remaining generators K
ℓ
ej
j

, through this
isogeny. By picking the greedy strategy of always computing the smaller ℓ first, we bound the cost
of evaluating Kℓe in other isogenies by O(M(k) · ℓ).

238

Total cost of signing. Based on the analysis above, we let

Costp(ℓ
ei
i) = c1M(ki)e log ℓ+ c2eiℓiki + c3eiℓi log(ℓi) + c4M(ki)ℓ

where ki, and M(k) are as before, and ci are constants corresponding to the differences in the
asymptotic complexities. Since we can estimate the total cost of executing IdealToIsogenyT by
summing the cost of each maximal prime power divisor of T , and observing that signing consists
of executing IdealToIsogenyDcom

one time, and IdealToIsogenyT a total of 2 · ⌈e/f⌉ times, we get a
rough cost estimate of signing as

SigningCostp(T) = (2 · ⌈e/f⌉+ 1) ·
∑
ℓ
ei
i |T

Costp(ℓ
ei
i).

In Section 11.6, we use this function to pick p and T minimising this cost. While this cost metric is
very rough, we show that our implementation roughly matches the times predicted by this function.
Further, we show that this cost metric suggests that going to extension fields gives signing times
within the same order of magnitude as staying over Fp2 , even when considering the additional
benefit of using

√
élu to compute isogenies in the latter case. An explicit comparision of the cost

of signing over Fp2 versus over extension fields is given in Table 11.3.

11.3 Effect of increased 2•-torsion on verification

In Section 11.2, we showed that signing with extension fields gives us more flexibility in choosing
the prime p, and, in particular, allows us to find primes with rational 2f -torsion for larger f . In
this section, we analyse how such an increase in 2•-torsion affects the cost of SQIsign verification,
e.g., computing φresp and φ̂chall, in terms of Fp-multiplications, taking the SQIsign (NIST) imple-
mentation, with no further optimisations, as the baseline for comparison. As standard, we denote
Fp-multiplications by M, Fp-squarings by S, and Fp-additions by a.

11.3.1 Detailed description of verification

Before giving an in-depth analysis of verification performance, we give a detailed description of
how verification is executed. Recall that a SQIsign signature σ for a message msg created by a
signer with secret signing key φsk : E0 → Epk proves knowledge of an endomorphism on Epk

2

by describing an isogeny φresp : Epk → Echall of degree 2e. Given a message msg, it is hashed
with Ecom to a point Kchall of order Dchall, hence represents an isogeny φchall : Ecom → Echall. A
signature is valid if the composition of φresp with φ̂chall is cyclic of degree 2e ·Dchall.

To verify a signature σ, the verifier must (a) recompute φresp, (b) compute the dual of φchall,
to confirm that both are well-formed, and finally (c) recompute the hash of the message msg to
confirm the validity of the signature.

In SQIsign, the size of the sample space for φchall impacts soundness of the underlying Σ-
protocol. In SQIsign (NIST), to obtain negligible soundness error (in the security parameter λ) the

2To emphasise that Epk is a Montgomery curve with coefficient A, we often denote it as EA in this chapter.

239

message is hashed to an isogeny of degree Dchall = 2f · 3g so that the size of cyclic isogenies of
degree Dchall is larger than 2λ. In contrast, when f ≥ λ, we can simply set Dchall = 2λ.

The signature σ consists of a compressed description of the isogenies φresp and φ̂chall. For f < λ

and Dchall = 2f · 3g it is of the form

σ = (b, s(1), . . . , s(n), r, b2, s2, b3, s3)

with s(j), s2 ∈ Z/2fZ, s3 ∈ Z/3gZ, r ∈ Z/2f3gZ, and b, b2, b3 ∈ {0, 1}. If f ≥ λ, we set Dchall = 2f

and have s2 ∈ Z/2λZ and r ∈ Z/2fZ, while b3, s3 are omitted.
Algorithmically, the verification process mostly requires three subroutines.

FindBasis: Given a curve E, find a deterministic basis (P,Q) of E[2f].

FindKernel: Given a curve E with basis (P,Q) for E[2f] and s ∈ Z/2fZ, compute the kernel
generator K = P + [s]Q.

ComputeIsogeny: Given a curve E and a kernel generator K, compute the isogeny φ : E → E/⟨K⟩
and φ(Q) for some Q ∈ E.

Below we detail each of the three verification steps (a)-(c).

Step (a). Computing φresp is split up into n − 1 blocks φ(j) : E(j) → E(j+1) of size 2f , and a
last block of size 2f0 , where f0 = e− (n− 1) · f . For every φ(j), the kernel ⟨K(j)⟩ is given by the
generator K(j) = P (j) + [s(j)]Q(j) for a deterministic basis (P (j), Q(j)) of E(j)[2f].

In the first block, after sampling (P (1), Q(1)) via FindBasis, the bit b indicates whether P (1)

and Q(1) have to be swapped before running FindKernel. For the following blocks, the verifier
pushes Q(j) through the isogeny φ(j) to get a point Q(j+1) ← φ(j)(Q(j)) on E(j+1) of order 2f

above (0, 0).3 Hence, for j > 1 FindBasis only needs to find a suitable point P (j) to complete the
basis (P (j), Q(j)). Furthermore, K(j) is never above (0, 0) for j > 1, which ensures cyclicity when
composing φ(j) with φ(j−1). In all cases we use s(j) from σ to compute the kernel generator K(j)

via FindKernel and φ(j) via ComputeIsogeny.
The last block of degree 2f0 uses Q(n) ← [2f−f0]φ(n−1)(Q(n−1)) and samples another point P (n)

as basis of E(n)[2f0]. In the following, we will often assume f0 = f for the sake of simplicity.4

Step (b). Computing φ̂chall requires a single isogeny of smooth degree Dchall ≈ 2λ. For the
primes given in SQIsign (NIST), we have Echall[Dchall] ⊆ Echall(Fp2). Thus, we compute φchall

by deterministically computing a basis (P,Q) for Echall[Dchall] and finding the kernel ⟨K⟩ for
φ̂chall : Echall → Ecom. For f < λ, we have Dchall = 2f · 3g, and split this process into two parts.

Given the basis (P,Q) for Echall[Dchall], we compute (P2, Q2) = ([3g]P, [3g]Q) as basis of
Echall[2

f], and use K2 = P2 + [s2]Q2, where b2 indicates whether P2 and Q2 have to be swapped
prior to computing K2. We compute φ2 : Echall → E′

chall with kernel ⟨K2⟩, and P3 = [2f]φ2(P)

and Q3 = [2f]φ3(Q) form a basis of E′
chall[3

g]. Then b3 indicates a potential swap of P3 and Q3,
while K3 = P3 + [s3]Q3 is the kernel generator of the isogeny φ3 : E′

chall → Ecom. Thus, we have
φ̂chall = φ3 ◦ φ2. If f ≥ λ, we require only the first step.

3A point P is said to be above a point R if [k]P = R for some k ∈ N.
4In contrast to earlier versions, SQIsign (NIST) fixes f0 = f . However, our analysis benefits from allowing f0 < f .

240

We furthermore verify that the composition of φresp and φ̂chall is cyclic, by checking that the
first 2-isogeny step of φ2 does not revert the last 2-isogeny step of φ(n). This guarantees that
φ̂chall ◦ φresp is non-backtracking, hence cyclic.

Step (c). On Ecom, the verifier uses the point Q′ ← φ̂chall(Q
′), where Q′ is some (deterministically

generated) point, linearly independent from the generator of φ̂chall, and r (a scalar given in the
signature σ) to compute [r]Q′, and checks if [r]Q′ matches the hashed point Kchall = H(msg, Ecom),
where H is a hash function.

11.3.2 Impact of large f on verification

The techniques of Section 11.2 extend the possible range of f to any size below log(p). This gives
two benefits to the cost of verification, especially when f ≥ λ.

Number of blocks in φresp. The larger f is, the fewer blocks of size 2f are performed in Step
(a). Per block, the dominating part of the cost are FindBasis and FindKernel as we first need to
complete the torsion basis (P (j), Q(j)) for E(j)[2f] (given Q(j) if j > 1), followed by computing
K(j) = P (j) + [s(j)]Q(j). By minimizing the number of blocks n, we minimize the amount of
times we perform FindBasis and FindKernel, and the cost of each individual FindKernel only mildly
increases, as s(j) increases in size. The overall cost of ComputeIsogeny, that is, performing the n
isogenies of degree 2f given their kernels K(j), only moderately increases with growing f .

We further note that larger f requires fewer T -isogeny computations for the signer, hence
signing performance also benefits from smaller n.

Challenge isogeny. When f ≥ λ, we can simply set Dchall = 2λ, which has two main benefits.

• The cost of FindBasis for this step is reduced as finding a basis for E[2λ] is much easier than
a basis search for E[2f · 3g].

• The cost of ComputeIsogeny for φchall decreases as we only have to compute a chain of 2-
isogenies instead of additional 3-isogenies.

11.3.3 Implementation and benchmark of cost in Fp-multiplications

To measure the influence of the size of f on the performance, we implemented SQIsign verification
for the NIST Level I security parameter set in Python, closely following SQIsign (NIST). As
is standard in isogeny-based schemes, we use x-only arithmetic and represent points and curve
coefficients projectively. The benchmark counts Fp-operations and uses a cost metric that allows
us to estimate the runtime of real-world implementations for 256-bit primes p(f), where p(f) denotes
a prime such that 2f divides p(f) + 1. We benchmark primes p(f) for all values 50 ≤ f ≤ 250.
These results serve as a baseline to which we compare the optimisations that we introduce in
Sections 11.4 and 11.5.

We briefly outline how SQIsign (NIST) implements the three subroutines FindBasis, FindKernel,
and ComputeIsogeny.

241

FindBasis. We search for points of order 2f by sampling x-coordinates in a specified order,5

and check if the corresponding point P lies on E (and not on its twist Et). We then compute
P ← [p+1

2f
]P and verify that [2f−1]P ̸= 0E . Given two points P,Q ∈ E of order 2f , we verify linear

independence by checking that [2f−1]P ̸= [2f−1]Q, and discard and re-sample the second point
otherwise. As discussed above in the description of Step (a), after the first step is performed, the
verifier pushes a 2f -torsion point Q lying above (0, 0) through the previous isogeny step. As such,
the verifier only needs to find a point P that completes a basis for E[2f] using CompleteBasis2f .

FindKernel. Given a basis (P,Q), FindKernel computes K = P + [s]Q via the ThreePointLadder

algorithm as used in SIKE [10]. In addition to the x-coordinates xP and xQ of P and Q, it requires
the x-coordinate xP−Q of P − Q. Hence, after running FindBasis, we further compute xP−Q as
described in SQIsign (NIST) [78].

ComputeIsogeny. Given a kernel generator K of order 2f , ComputeIsogeny follows the approach
of SIKE [10], and computes the 2f -isogeny φ(j) as a chain of 4-isogenies for efficiency reasons via
FourIsogenyChain. If f is odd, we further compute a single 2-isogeny. Following SQIsign (NIST),
ComputeIsogeny proceeds as follows:

1. Compute R = [2f−2]K and the corresponding 4-isogeny φ with kernel ⟨R⟩. Note that the
point (0, 0) might be contained in ⟨R⟩ for the first block in φresp, which requires a special
4-isogeny formula. Thus, we check if this is the case and call the suitable 4-isogeny function.
We set K ← φ(K).

2. If f is odd, we compute R = [2f−3]K, the 2-isogeny φ with kernel ⟨R⟩, and K ← φ(K).

3. Compute the remaining isogeny of degree 2f
′

with even f ′ as a chain of 4-isogenies, where
(0, 0) is guaranteed not to lie in any of the kernels.

In the last step, SQIsign (NIST) uses optimal strategies as in SIKE [10] to compute a chain of
4-isogenies. Naive multiplicative strategies would compute R = [2f

′−2j]K, the 4-isogeny φ with
kernel ⟨R⟩, and K ← φ(K) for j = 1, . . . , f ′/2. However, this strategy is dominated by costly
doublings. Instead, we can save intermediate multiples of K during the computation of R =

[2f
′−2j]K, and push them through isogenies to save multiplicative effort in following iterations.

Optimal strategies that determine which multiples are pushed through isogenies and minimise the
cost can be found efficiently [10, 123].

We note that for f < λ the computation of φ̂chall requires small adaptations to these algorithms
to allow for finding a basis of E[Dchall] and computing 3-isogenies. Most notably, SQIsign (NIST)

does not use optimised formulas or optimal strategies for 3-isogenies from SIKE [10], but uses
a multiplicative strategy and general odd-degree isogeny formulas [102, 234]. We slightly deviate
from SQIsign (NIST) by implementing optimised 3-isogeny formulas, but note that the performance
difference is minor and in favour of SQIsign (NIST).

An algorithmic description of a single block of SQIsign (NIST) summarising the discussion
above is given in Algorithm 11.2. Here, ProjectiveToAffine simply denotes an algorithm to move
from projective to affine coordinates/coefficients.

5SQIsign (NIST) fixes the sequence xk = 1 + k · i with i ∈ Fp2 such that i2 = −1 and picks the smallest k for
which we find a suitable point.

242

Algorithm 11.2 Single block in verification of SQIsign (NIST)

Input: Affine Montgomery coefficient A ∈ Fp2 of elliptic curve EA, a basis xP , xQ, xP−Q for
EA[2

f] with Q above (0, 0) and s ∈ Z/2fZ defining a kernel.
Output: Affine coefficient A′ ∈ Fp2 describing E′

A as the codomain of EA → EA′ of degree 2f ,
with a basis xP , xQ, xP−Q for E′

A[2
f] with Q above (0, 0).

1: K ← ThreePointLadder(xP , xQ, xP−Q, s, A)
2: Aproj., xQ ← FourIsogenyChain(K,xQ, A)
3: A, xQ ← ProjectiveToAffine(Aproj., xQ)
4: xP , xP−Q ← CompleteBasis2f (xQ, A)
5: return A, xP , xQ, xP−Q

Cost metric. In implementations, Fp2-operations usually call underlying Fp-operations. We
follow this approach and use the total number of Fp-operations in our benchmarks. As cost metric,
we express these operations in terms of Fp-multiplications, with S = 0.8 ·M, ignoring Fp-additions
and subtractions due to their small impact on performance. Fp-inversions, Fp-square roots, and
Legendre symbols over Fp require exponentiations by an exponent in the range of p, hence we
count their cost as log(p) Fp-multiplications. In contrast to measuring clock cycles of an optimised
implementation, our cost metric eliminates the dependence on the level of optimisation of finite
field arithmetic and the specific device running SQIsign, hence, can be considered more general.

Benchmark results. Figure 11.1 shows the verification cost for the NIST Level I-sized primes
p(f) for 50 ≤ f ≤ 250, fixing e = 975, using our cost metric. For more efficient benchmarking,
we sample random public key curves and signatures σ of the correct form instead of signatures
generated by the SQIsign signing procedure.

The graph shows the improvement for f ≥ 128. Furthermore, we can detect when the number
of blocks n decreases solely from the graph (e.g. f = 122, 140, 163, 195, 244). The cost of sampling
a 2f -torsion basis is highly variable between different runs for the same prime, which is visible from
the oscillations of the graph. The performance for odd f is worse in general due to the inefficient
integration of the 2-isogeny, which explains the zigzag-shaped graph.

From the above observations, we conclude that f ≥ λ is significantly faster for verification,
with local optima found at f = 195 and f = 244, due to those being (almost) exact divisors of the
signing length e = 975.

Remark 11.3.1. The average cost of FindBasis differs significantly between primes p even if they
share the same 2f -torsion. This happens because SQIsign (NIST) finds basis points from a pre-
determined sequence [x1, x2, x3, . . .] with xj ∈ Fp2 . As we will see in Section 11.4, these xj values
can not be considered random: some values xj are certain to be above a point of order 2f , while
others are certain not to be, for any supersingular curve over p.

11.4 Optimisations for verification

In this section, we show how the improvements from Section 11.2 that increase f beyond λ together
with the analysis in Section 11.3 allow several other optimisations that improve the verification

243

50 75 100 125 150 175 200 225 250
0

200

400

600
·103

f

C
os
t

Figure 11.1: Cost in Fp-multiplications for verification at NIST Level I security, for varying f and p(f),
averaged over 1024 runs per prime. The green vertical lines mark f = 75 as used in SQIsign (NIST) for
signing without extension fields, and f = λ = 128, beyond which we can set Dchall = 2λ. The dotted graph
beyond f = 75 is only accessible when signing with extension fields.

time of SQIsign in practice. Whereas the techniques in Section 11.2 allow us to decrease the number
of blocks, in this section, we focus on the operations occurring within blocks. We optimise the cost
of FindBasis, FindKernel and ComputeIsogeny.

We first analyse the properties of points that have full 2f -torsion, and use them to improve
FindBasis and FindKernel for general f . We then describe several techniques specifically for f ≥ λ.
Altogether, these optimisations significantly change the implementation of verification in compar-
ison to SQIsign (NIST). We remark that the implementation of the signing procedure must be
altered accordingly, as exhibited by our implementation.

Notation. As we mostly focus on the subroutines within a specific block E(j) → E(j+1), we will
omit the superscripts in E(j),K(j), P (j), . . . and write E,K,P, . . . to simplify notation.

For reference throughout this section, the pseudocode for a single block in the verification
procedure of our optimised variant is given by Algorithm 11.3.

11.4.1 Basis generation for full 2-power torsion

We first give a general result on points having full 2f -torsion that we will use throughout this
section. This theorem generalises previous results [103, 221] and will set the scene for easier and
more efficient basis generation for E[2f].

Theorem 11.4.1. Let E : y2 = (x − λ1)(x − λ2)(x − λ3) be an elliptic curve over Fp2 with
E[2f] ⊆ E(Fp2) the full 2-power torsion. Let Li = (λi, 0) denote the points of order 2 and [2]E

denote the image of E under [2] : P 7→ P + P so that E \ [2]E are the points with full 2f -torsion.
Then

Q ∈ [2]E if and only if xQ − λi is square for i = 1, 2, 3.

244

More specifically, for Q ∈ E \ [2]E, Q is above Li if and only if xQ − λi is square and xQ − λj is
non-square for j ̸= i.

Proof. It is well-known that Q = (x, y) ∈ [2]E if and only if x−λ1, x−λ2 and x−λ3 are all three
squares (see Theorem 4.1 in [184, Chapter 1]). Thus, for Q ∈ E \ [2]E, one of these three values
must be a square, and the others non-squares (as their product must be y2, hence square). We
proceed similarly as the proof of Theorem 3 by Lin, Wang, Xu, and Zhao [221]. Namely, let P1, P2

and P3 denote points of order 2f above L1 = (λ1, 0), L2 = (λ2, 0) and L3 = (λ3, 0), respectively,
of order 2. A point Q ∈ E \ [2]E must lie above one of the Li. Therefore, the reduced Tate pairing
of degree 2f of Pi and Q gives a primitive 2f -th root of unity if and only if Q is not above Li. Let
ζi = e2f (Pi, Q), then by [171, Theorem IX.9] we have

ζ2
f−1

i = e2(Li, Q).

We can compute e2(Li, Q) by evaluating a Miller function f2,Li
in Q, where div f2,Li

= 2(Li) −
2(0E). The simplest option is the line that doubles Li, that is, f2,Li

(x, y) = x− λi, hence

e2(Li, Q) = (xQ − λi)
p2−1

2 .

Applying Euler’s criterion to this last term, we get that if xQ − λi is square, then ζi is not a
primitive 2f -th root and hence Q must be above Li, whereas if xQ − λi is non-square, then ζi is a
primitive 2f -th root and hence Q is not above Li.

Note that for Montgomery curves y2 = x3 +Ax2 + x = x(x− α)(x− 1/α), the theorem above
tells us that non-squareness of xQ for Q ∈ E(Fp2) is enough to imply Q has full 2f -torsion and is
not above (0, 0) [221, Thm. 3].

Finding points with 2f -torsion above (0, 0). We describe two methods to efficiently sample
Q above (0, 0), based on Theorem 11.4.1.

1. Direct x sampling. By deterministically sampling xQ ∈ Fp, we ensure that xQ is square in
Fp2 . Hence, if Q lies on E and xQ−α ∈ Fp2 is non-square, where α is a root of x2 +Ax+1,
then Theorem 11.4.1 ensures that Q ∈ E \ [2]E and above (0, 0).

2. Smart x sampling. We can improve this using the fact that α is always square [9, 100].
Hence, if we find z ∈ Fp2 such that z is square and z−1 is non-square, we can choose xQ = zα

square and in turn xQ − α = (z − 1)α non-square. Again, by Theorem 11.4.1 if Q is on E,
this ensures Q is above (0, 0) and contains full 2f -torsion. Hence, we prepare a list [z1, z2, . . .]
of such values z for a given prime, and try xj = zjα until xj is on E.

Both methods require computing α, dominated by one Fp2-square root. Direct sampling computes
a Legendre symbol of x3 + Ax2 + x per x to check if the corresponding point lies on E. If so, we
check if x− α is non-square via the Legendre symbol. On average, this requires four samplings of
x and six Legendre symbols to find a suitable xQ with Q ∈ E(Fp2), and, given that we can choose
xQ to be small, we can use fast scalar multiplication on xQ (see Section 11.4.2.1).

245

In addition to computing α, smart sampling requires the Legendre symbol computation of
x3 + Ax2 + x per x. On average, we require two samplings of an x to find a suitable xQ, hence
saving four Legendre symbols in comparison to direct sampling. However, we can no longer choose
xQ small, which means that improved scalar multiplication for small xQ is not available.

Finding points with 2f -torsion not above (0, 0). As shown by Lin, Wang, Xu, and Zhao
[221], we find a point P with full 2f -torsion not above (0, 0) by selecting a point on the curve
with non-square x-coordinate. Non-squareness depends only on p, not on E, so a list of small
non-square values can be precomputed. In this way, finding such a point P simply becomes finding
the first value xP in this list such that the point (xP ,−) lies on E(Fp2), that is, x3P +Ax2P + xP is
square. On average, this requires two samplings of x, hence two Legendre symbol computations.

11.4.2 General improvements to verification

In this section, we describe improvements to SQIsign verification and present new optimisations,
decreasing the cost of the three main subroutines of verification.

11.4.2.1 Known techniques from literature

There are several state-of-the-art techniques in the literature on efficient implementations of elliptic
curve or isogeny-based schemes that allow for general improvements to verification, but are not
included in SQIsign (NIST).

We use xDBL(xP) to denote x-only point doubling of a point P , and similarly we denote by
xADD(xP , xQ, xP−Q) x-only differential addition of points P and Q. We use xMUL(xP ,m) to
denote x-only scalar multiplication of a point P by the scalar m.

Faster scalar multiplications. We describe three improvements to the performance of xMUL,
that can be applied in different situations during verification.

1. Affine A. Throughout verification and specifically in FindBasis and FindKernel, we work
with the Montgomery coordinate A in projective form. However, some operations, such as
computing the point difference xP−Q given xP and xQ require A in affine form. Having an
affine A allows an additional speed-up, as xDBL requires one Fp2 -multiplication less in this
case. Thus, xMUL with affine A is cheaper by 3M per bit of the scalar.

2. Affine points. Using batched inversion, whenever we require A in affine form we can get xP
and xQ in affine form for almost no extra cost. An xMUL with affine xP or xQ saves another
Fp2-multiplication, hence again 3M, per bit of the scalar.

3. Small x-coordinate. For a point P with xP = a+ bi with small a and b, we can replace a
Fp2-multiplication by xP with a+ b additions. This, in turn, saves almost 3M per bit of the
scalar in any xMUL of xP .

As we can force P and Q to have b ∈ {0, 1} and small a when sampling them in FindBasis, these
points are affine and have small x-coordinates. Together with the affine A, this saves almost 9M
per bit for such scalar multiplications, saving roughly 27% per xMUL. We call such a xMUL a fast
xMUL. Whenever xMUL uses 2 of these optimisations, we call it semi-fast.

246

Whenever possible, we use differential addition chains [25] to improve scalar multiplications by
certain system parameters, such as p+1

2f
. In particular, we will only need to multiply by a few,

predetermined scalars, and therefore we follow the method described by Cervantes-Vázquez, Chenu,
Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith [75, §4.2]. Our optimal differential
addition chains were precomputed using the CTIDH software [12].

Faster square roots. We apply several techniques from the literature to further optimise low-
level arithmetic in verification. The most significant of these is implementing faster square roots
in Fp2 following Scott [281, §5.3], as described in Section 7.2.1 of Chapter 7. This decreases the
cost of finding square roots to two Fp-exponentiations6 and a few multiplications.

Projective point difference. The implementation of SQIsign (NIST) switches between affine and
projective representations for xP , xQ and A within each block (see, for example, Algorithm 11.2).
It does so to be able to derive the point difference xP−Q from xP and xQ in order to complete
the basis P,Q in terms of x-coordinates. However, it is possible to compute the point difference
entirely projectively using Proposition 3 from [268]. This allows us to stay projective during the
SQIsign (NIST) verification until we reach Echall, where we do normalization of the curve. This
saves costly inversions during verification and has the additional benefit of improved elegance
for SQIsign (NIST). However, in our variant of verification, we make no use of projective point
difference, as the improvements of Section 11.4 seem to outperform this already.

11.4.2.2 Improving the subroutine FindBasis

In SQIsign (NIST), to find a complete basis for E[2f] we are given a point Q ∈ E[2f] lying above
(0, 0) and need to find another point P ∈ E(Fp2) of order 2f not lying above (0, 0). We sample
P directly using xP non-square, as described above and demonstrated by Lin, Wang, Xu, and
Zhao [221]. In particular, we can choose xP small. We then compute P ← [p+1

2f
]P via fast scalar

multiplication to complete the torsion basis (P,Q).

11.4.2.3 Improved strategies for ComputeIsogeny

Recall that ComputeIsogeny follows three steps in SQIsign (NIST): it first computes a 4-isogeny that
may contain (0, 0) in the kernel, and a 2-isogeny if f is odd, before entering an optimal strategy
for computing the remaining chain of 4-isogenies. However, the first two steps include many costly
doublings. We improve this by adding these first two steps in the optimal strategy. If f is even,
this is straightforward, with a simple check for (0, 0) in the kernel in the first step. For odd f , we
add the additional 2-isogeny in this first step. For simplicity of the implementation, we determine
optimal strategies as in SIKE [10], thus we assume that only 4-isogenies are used.

Note that techniques for strategies with variable isogeny degrees are available from the literature
on CSIDH implementations [81]. However, the performance difference is very small, hence our
simplified approach appears to be preferable.

In addition to optimising 4-isogeny chains, we implemented optimised 3-isogeny chains from
SIKE [10] for the computation of φ̂chall when f < 128.

6Indeed, using notation as in Section 7.2.1, we have 2f | p+ 1 as p ≡ 3 mod 4, and so the value e = 1.

247

11.4.3 To push, or not to push – that is, the Q

In SQIsign (NIST), the point Q is pushed through φ so that we easily get the basis point above
(0, 0) on the image curve, and we can then use Theorem 11.4.1 to sample the second basis point P .
Instead of pushing Q, one can also use Theorem 11.4.1 to efficiently sample this basis point Q above
(0, 0). Although pushing Q seems very efficient, for larger f we are pushing Q through increasingly
larger isogeny chains, whereas sampling becomes increasingly more efficient as multiplication cost
by p+1

2f
decreases. Furthermore, sampling both P and Q allows us to use those points as an

implicit basis for E[2f], even if their orders are multiples of 2f , as described in more detail below.
We observe experimentally that this makes sampling Q, instead of pushing Q, more efficient for
f > 128.

Using implicit bases. Using Theorem 11.4.1, it is possible to find points P and Q efficiently
so that both have full 2f -torsion. The pair (P,Q) is not an explicit basis for E[2f], as the orders
of these points are likely to be multiples of 2f . However, instead of multiplying both points by
the cofactor to find an explicit basis, we can use these points implicitly, as if they were a basis for
E[2f]. This allows us to compute K = P + [s]Q first, and only then multiply K by the cofactor.
This saves a full scalar multiplication by the cofactor p+1

2f
. We refer to such a pair (P,Q) as an

implicit basis of E[2f]. Algorithmically, implicit bases combine FindBasis and FindKernel into a
single routine FindBasisAndKernel.

11.4.4 Improved challenge for f ≥ λ

Recall from Section 11.3.2 that when f ≥ λ, we can simply set Dchall = 2λ. This decreases the
cost of FindBasis for the challenge computation considerably, as we can now use Theorem 11.4.1
to find a basis for E[2λ].

Improving FindBasis for the challenge isogeny when f ≥ λ. We use Theorem 11.4.1 twice,
first to find P not above (0, 0) having full 2f -torsion and then to find Q above (0, 0) having full
2f -torsion. We choose xP and xQ small such that faster scalar multiplication is available. We find
the basis for E[2λ] by P ← [p+1

2f
]P followed by f − λ doublings, and Q ← [p+1

2f
]Q followed by

f − λ doublings. Algorithmically, this is faster than a single scalar multiplication by 2f−λ · p+1
2f

.
Alternatively, if Q is pushed through isogenies, we can reuse Q ← φ(n)(Q(n)) ∈ E[2f] from the
computation of the last step of φresp, so that we get a basis point for E[2λ] by f − λ doublings of
Q. Reusing this point Q also guarantees cyclicity of φ̂chall ◦ φresp.

Remark 11.4.2. For SQIsign without extension fields, obtaining f ≥ λ seems infeasible, hence
the degree D of φchall is 2f · 3g. Nevertheless, some optimizations are possible in the computation
of φchall in this case. FindBasis for E[2f · 3g] benefits from similar techniques as previously used
in SIDH/SIKE, as we can apply known methods to improve generating a torsion basis for E[3g]

coming from 3-descent [103, § 3.3]. Such methods are an analogue to generating a basis for E[2f]

as described in Theorem 11.4.1 and [221, Theorem 3].

248

11.5 Size-speed trade-offs in SQIsign signatures

The increase in f also enables several size-speed trade-offs by adding further information in the
signature or by using uncompressed signatures. Some trade-offs were already present in earlier
versions of SQIsign [125], however, by using large f and the improvements from Section 11.4, they
become especially worthwhile.

We take a slightly different stance from previous work on SQIsign as for many use cases the
main road block to using SQIsign is the efficiency of verification in cycles. In contrast, in several
applications the precise size of a signature is less important as long as it is below a certain thresh-
old.7 For example, many applications can handle the combined public key and signature size of
RSA-2048 of 528 bytes, while SQIsign (NIST) features a combined size of only 241 bytes. In this
section, we take the 528 bytes of RSA-2048 as a baseline, and explore size-speed trade-offs for
SQIsign verification with data sizes up to this range.

We note that the larger signatures in this section encode the same information as standard
SQIsign signatures, hence have no impact on the security.

11.5.1 Adding seeds for the torsion basis in the signature

We revisit an idea that was previously present in the original SQIsign verification [125], but no
longer in [78] or [126], and highlight its particular merits whenever f ≥ λ, as enabled by signing
with extension fields. So far, we have assumed that completing or sampling a basis for E[2f] is done
by deterministically sampling points. Recall from Section 11.4.1 that sampling xP resp. xQ (when
not pushing Q) on average requires the computation of several Legendre symbols resp. square roots.
We instead suggest using a seed to find xP (when pushing Q) or xP and xQ (otherwise), which
we include in the signature, so that the verifier saves all of the above cost for finding xP , resp.
xQ. Finding these seeds adds negligible overhead for the signer, while verification performance
improves. Signer and verifier are assumed to agree upon all precomputed values.

Seeding a point not above (0, 0). For xP not above (0, 0), we fix a large enough k > 0 and
precompute the 2k smallest values uj ∈ Fp such that uj+i ∈ Fp2 is non-square (where i is the same
as in Section 11.4). During signing, we pick the smallest uj such that xP = uj+i is the x-coordinate
of a point P ∈ E(Fp2), and add the index j to the signature as a seed for xP . Theorem 11.4.1
ensures that any P ∈ E(Fp2) for non-square xP is a point with full 2f -torsion not above (0, 0).
This furthermore has the advantage of fast scalar multiplication for xP as the x-coordinate is very
small.

Seeding a point above (0, 0). As noted above, when f is large, it is faster to deterministically
compute a point of order 2f above (0, 0) than to push Q through φ. We propose a similar seed
here for fixed large enough k > 0, using Theorem 11.4.1 and the “direct sampling” approach
from Section 11.4.1. During signing, we pick the smallest j ≤ 2k such that xQ = j is the x-
coordinate of a point Q ∈ E(Fp2) and xQ − α is non-square. We add xQ = j to the signature as a
seed.

7See https://blog.cloudflare.com/sizing-up-post-quantum-signatures/.

249

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Note that when using both seeding techniques, we do not explicitly compute [p+1
2f

]P or [p+1
2f

]Q,
but rather use the seeded points P and Q as an implicit basis, as described in Section 11.4.3.

Size of seeds. Per seeded point, we add k bits to the signature size. Thus, we must balance k so
that signatures do not become too large, while failure probabilities for not finding a suitable seed
are small enough. In particular, seeding xP resp. xQ via direct sampling has a failure probability
of 1

2 resp. 3
4 per precomputed value. For the sake of simplicity, we set k = 8 for both seeds, such

that every seed can be encoded as a separate byte. This means that the failure rate for seeding
Q is (34)

256 ≈ 2−106.25 for our choice, while for P it is 2−256. Theoretically it is still possible that
seeding failures occur. In such a case, we simply rerun SigningKLPT. Note that for equal failing
rates the number of possible seeds for P can be chosen smaller than for Q, hence slightly decreasing
the additional data sizes. We furthermore include similar seeds for the torsion basis on Epk and
Echall, giving a size increase of 2(n+ 1) bytes.

The synergy with large f now becomes apparent. The larger f gets, the fewer blocks n are
required, hence adding fewer seeds overall. For f = 75, the seeds require an additional 28 bytes
when seeding both P and Q. For f = 122, 140, 163, 195, and 244 this drops to 18, 16, 14, 12,
and 10 additional bytes, respectively, to the overall signature size of 177 bytes for NIST Level I
security.

Remark 11.5.1. Instead of using direct sampling for Q with failure probability 3
4 , we can reduce

it to 1
2 via “smart sampling” (see Section 11.4.1). However, this requires the verifier to compute

α via a square root to set xQ = zα with seeded z. We thus prefer direct sampling for seeded Q,
which incurs no such extra cost.

Before concluding with a discussion on uncompressed signatures, we summarise the last two
sections by presenting an algorithm for the computation of a single block in verification with our
new optimisations, given in Algorithm 11.3.

Algorithm 11.3 Single block in verification using improvements of Section 11.4 and Section 11.5

Input: Projective Montgomery coefficient A ∈ Fp2 describing elliptic curve EA, a seed (n,m)
and s ∈ Z/2fZ defining a kernel.
Output: Affine coefficient A′ ∈ Fp2 describing EA′ as the codomain of EA → EA′ of degree 2f .

1: xP ← SmallNonSquare(m)
2: xQ ← n
3: xP−Q ← PointDifference(xP , xQ, A) { implicit basis xP , xQ, xP−Q }
4: K ← ThreePointLadder(xP , xQ, xP−Q, s, A)
5: K ← xMUL(xK ,

p+1
2f
, A) { semi-fast xMUL }

6: Aproj ← FourIsogenyChain(K,A)
7: A← ProjectiveToAffine(Aproj)
8: return A

11.5.2 Uncompressed signatures

When f is very large, and hence the number of blocks is small, in certain cases it is worthwhile to
replace the value s in the signature by the full x-coordinate of K = P +[s]Q. In essence, this is the

250

uncompressed version of the SQIsign signature σ, and we thus refer to this variant as uncompressed
SQIsign.

Speed of uncompressed signatures. Adding the precise kernel point K removes the need for
both FindBasis and FindKernel, leaving ComputeIsogeny as the sole remaining cost. This speed-up
is significant, and leaves little room for improvement beyond optimizing the cost of computing
isogenies. The cost of verification in this case is relatively constant, as computing an 2e-isogeny
given the kernels is only slightly affected by the size of f , as is visible in the black dashed line
in Figure 11.2. This makes uncompressed SQIsign an attractive alternative in cases where the
signature size, up to a certain bound, is less relevant.

Size of uncompressed signatures. Per step, this increases the size from log(s) ≈ f to 2 log(p)

bits, which is still relatively size efficient when f is close to log(p). For recomputing φchall, we
take a slightly different approach than before. We add the Montgomery coefficient of Ecom to
the signature, and seeds for a basis of Ecom[2f]. From this, the verifier can compute the kernel
generator of φchall, and verify that the j-invariant of its codomain matches Echall. Hence, this adds
2 log(p) bits for Ecom and two bytes for seeds to the signature, for a total of (n+1) · (log(p)/4)+2

bytes.
For f = 244, this approach less than doubles the signature size from 177 bytes to 322 bytes

for NIST Level I security. For f = 145, the signature becomes approximately 514 bytes, while for
the current NIST Level I prime with f = 75, the size would become 898 bytes. When adding the
public key size of 64 bytes, especially the first two cases still appear to be reasonable alternatives
to RSA-2048’s combined data size of 528 bytes.

Remark 11.5.2. Uncompressed signatures significantly simplify verification, as many function-
alities required for compressed signatures are not necessary. Hence, this allows for a much more
compact code base, which might be important for use cases featuring embedded devices with strict
memory requirements.

11.6 Primes and performance

In this section we show the performance of verification for varying f , using the optimisations from
the previous sections. Further, we find specific primes with suitable f for n = 4 and n = 7,
and report their signing performance using our SageMath implementation, comparing it with the
current SQIsign (NIST) prime.

11.6.1 Performance of optimised verification

The optimisations for compressed variants from Section 11.4 and Section 11.5 allow for several
variants of verification, depending on using seeds and pushing Q through isogenies, specifically
optimised for f ≥ λ. We summarise the four resulting approaches and measure their performance.

Pushing Q, sampling P without seed. This variant is closest to the original SQIsign (NIST)

and SQIsign (LWXZ) implementations. It is the optimal version for non-seeded verification for

251

f ≤ 128, using the general optimisations from Section 11.4.2 and the challenge optimisations
from Section 11.4.4.

Not pushing Q, sampling both P and Q without seed. This variant competes with the
previous version in terms of signature size. Due to Section 11.4.3, sampling a new Q is more
efficient than pushing Q for large f .8 This is the optimal version for non-seeded verification for
f > 128, and additionally uses the optimisations from Section 11.4.3.

Pushing Q, sampling P with seed. This variant only adds seeds to the signature to describe
xP . As such, it lies between the other three variants in terms of both signature size and speed.
The signature is 1 byte per block larger than the unseeded variants, and 1 byte per block smaller
than the variant where xQ is seeded too. In terms of speed, it is faster than the variants where
P is unseeded, but slower than the variant where Q is seeded too. It uses the optimisations
from Sections 11.4.2 and 11.4.4, but cannot benefit from the kernel computation via implicit bases
from Section 11.4.3.

Not pushing Q and sampling both P and Q with seed. This is the fastest compressed version
that we present in this work. Although it adds 2 bytes per block, the small number of blocks n for
large f makes the total increase in signature size small. All the optimisations from Section 11.4
now apply: we additionally have fast xMUL for Q, as well as the optimised implicit basis method
to compute the kernel and optimised challenge. An algorithmic description of a single block in this
version is given in Algorithm 11.3.

11.6.2 Performance benchmark

To compare the verification performance of our optimised variants with compressed signatures to
SQIsign (NIST) and SQIsign (LWXZ), we run benchmarks in the same setting as in Section 11.3.3.
Our implementation of SQIsign (LWXZ) [221] is identical to SQIsign (NIST) except for the improved
sampling of P described in Section 11.4.1. In particular, Figure 11.2 shows the cost of verification
for the NIST Level I primes p(f) for 50 ≤ f ≤ 250. As before, we sample random public key curves
and signatures σ of the correct form instead of using signatures generated by the SQIsign signing
procedure.

We benchmarked these four approaches according to our cost metric by taking the average over
1024 random signatures. The results are given in Figure 11.2 showing the significant increase in per-
formance compared to SQIsign (NIST) and SQIsign (LWXZ), as well as the additional performance
gained from seeding. For comparison, we also show the performance when using uncompressed
signatures, serving as a lower bound for the cost.

11.6.3 Finding specific primes

We now give two example primes, one prime optimal for 4-block verification, as well as the best
we found for 7-block verification. The “quality” of a prime p is measured using the cost metric
SigningCostp defined in Section 11.2.3.

8Based on benchmarking results, we sample Q with x = nα for f < 200 and directly for f ≥ 200.

252

50 75 100 125 150 175 200 225 250
0

100

200

300

400

500

600
·103

f

C
os
t

Figure 11.2: Extended version of Figure 11.1 showing the cost in Fp-multiplications for verification
at NIST-I security level, for varying f and p(f), averaged over 1024 runs per prime. In addition to
SQIsign (NIST) in blue, it shows SQIsign (LWXZ) in red and all AprèsSQI variants: in purple is the perfor-
mance of AprèsSQI when pushing Q, with dashed purple when not seeding P ; in brown is the performance
of AprèsSQI when not pushing Q, with dashed brown when not seeding P,Q; and the performance of
uncompressed AprèsSQI is shown in black.

Optimal 4-block primes. For 4-block primes, taking e = 975 as a baseline, we need f bigger
than 244. In other words, we are searching for primes of the form

p = 2244N − 1,

where N ∈ [24, 212] (accepting primes between 250 and 256 bits). This search space is quickly
exhausted. For each prime of this form, we find the optimal torsion T to use, minimising the cost
SigningCostp(T). The prime with the lowest total cost in this metric, which we denote p4, is

p4 = 2246 · 3 · 67− 1.

The prime p4 has f = 246, with T given below.

T = 33 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71

· 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113 · 127 · 149 · 151 · 157 · 163 · 181

· 197 · 211 · 229 · 241 · 271 · 317 · 397 · 577 · 593 · 641 · 661 · 757 · 1069 · 2293

It has SigningCostp4(T) = 9632.73. The field of definition for the various torsion groups can be
found in Table 11.1.

253

k N

1 67, 73, 757
2 317, 2293
3 37, 127, 1069
4 593
5 11, 31, 71, 661
6 13
7 43
8 17, 113
9 33, 19, 181, 577
10 52, 61, 641
11 23, 89
14 29, 197
18 397
19 229
20 41

k N

21 72

23 47
25 151
26 53
27 109, 163, 271
29 59
30 241
35 211
37 149
39 79, 157
41 83
48 97
50 101
51 103
53 107

Table 11.1: Torsion groups E[N] and their minimal field E(Fp2k) for the prime p4.

Balanced primes. Additionally, we look for primes that get above the significant f > 128 line,
while minimizing SigningCostp(T). To do this, we adopt the sieve-and-boost technique used to
find the current SQIsign primes [78, §5.2.1]. However, instead of looking for divisors of p2 − 1, we
follow Theorem 11.2.3 and look for divisors of

k∏
n=1

Φn(p
2)/2

to find a list of good candidate primes. This list is then sorted with respect to their signing cost
according to SigningCostp. The prime with the lowest signing cost we could find, which we call
p7, is

p7 = 2145 · 39 · 593 · 3113 · 3173 · 5033 − 1.

The prime p7 is used for a verification with n = 7 blocks. It achieves f = 145, with T given below.

T = 37 · 54 · 72 · 11 · 13 · 17 · 192 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 532 · 593 · 61 · 67

· 71 · 73 · 79 · 109 · 113 · 131 · 157 · 181 · 193 · 223 · 239 · 241 · 271 · 283 · 3113

· 3173 · 331 · 349 · 5032 · 859 · 997

It has SigningCostp7(T) = 4137.91. The field of definition for the various torsion groups we work
with can be found in Table 11.2.

Remark 11.6.1. This method of searching for primes is optimised for looking for divisors of p2−1,
hence it might be suboptimal in the case of allowing torsion in higher extension fields. We leave
it as future work to find methods which further take advantage of added flexibility in the prime
search.

254

k N

1 37, 532, 593, 61, 79, 283, 3113, 3173, 349, 5032, 859, 997
3 13, 109, 223, 331
4 17
5 11, 31, 71, 241, 271
6 157
7 72, 29, 43, 239
8 113
9 192

10 54, 41
11 23, 67
12 193
13 131
15 181
18 37, 73
23 47

Table 11.2: Torsion groups E[N] and their minimal field E(Fp2k) for the prime p7.

p Largest N | T Largest Fp2k SigningCostp(T) Adj. Cost Timing

p1973 1973 k = 1 8371.7 1956.5 11m, 32s
p7 997 k = 23 4137.9 - 9m, 20s
p4 2293 k = 53 9632.7 - 15m, 52s

Table 11.3: Comparison between estimated cost of signing for three different primes.

11.6.4 Performance for specific primes

We now compare the performance of the specific primes p4, p7, as well as the current NIST Level
I prime p1973 used in SQIsign (NIST).

Signing performance. We give a summary of the estimated signing costs in Table 11.3. For
p1973, we include the metric “Adjusted Cost”, which we compute as SigningCost with the N -
isogeny computations scaling as

√
N logN to (rather optimistically) account for the benefit of√

élu. Further, we ran our proof-of-concept SageMath implementation on the three primes, using
SageMath 9.8, on a laptop with an Intel-Core i5-1038NG7 processor, averaged over five runs. An
optimised C implementation will be orders of magnitude faster; we use these timings simply for
comparison.

We note that the SigningCost-metric correctly predicts the ordering of the primes, though
the performance difference is smaller than predicted. A possible explanation for this is that the
SigningCost-metric ignores all overhead, such as quaternion operations, which roughly adds
similar amounts of cost per prime.

Our implementation uses
√

élu whenever the kernel generator is defined over Fp2 and N is bigger
than a certain crossover point. This mainly benefits p1973, as this prime only uses kernel generators
defined over Fp2 . The crossover point is experimentally found to be around N > 300 in our
implementation, which is not optimal, compared to an optimised C implementation. For instance,

255

work by Adj, Chi-Domínguez, and Rodríguez-Henríquez [1] gives the crossover point at N >

89, although for isogenies defined over Fp. Nevertheless, we believe that these timings, together
with the cost metrics, provide sufficient evidence that extension field signing in an optimised
implementation stays in the same order of magnitude for signing time as staying over Fp2 .

Verification performance. In Table 11.4, we summarise the performance of verification for
p1973, p7, and p4, both in terms of speed, and signature sizes.

Two highlights of this work lie in using p7, both with and without seeds, having (almost) the
same signature sizes as the current SQIsign signatures, but achieving a speed-up of factor 2.37 resp.
2.80 in comparison to SQIsign (NIST) and 1.82 resp. 2.15 in comparison to SQIsign (LWXZ), using
p1973. Another interesting alternative is using uncompressed p4, at the cost of roughly double
signature sizes, giving a speed-up of factor 4.46 in comparison to SQIsign (NIST) and 3.41 in
comparison to SQIsign (LWXZ).

p f Implementation Variant Verif. cost Sig. size

p1973 75

SQIsign (NIST) [78] - 500.4 177 B
SQIsign (LWXZ) [221] - 383.1 177 B

AprèsSQI unseeded 276.1 177 B
AprèsSQI seeded 226.8 195 B

p7 145
AprèsSQI unseeded 211.0 177 B
AprèsSQI seeded 178.6 193 B
AprèsSQI uncompressed 103.7 514 B

p4 246
AprèsSQI unseeded 185.2 177 B
AprèsSQI seeded 160.8 187 B
AprèsSQI uncompressed 112.2 322 B

Table 11.4: Comparison between verification cost for different variants and different primes, with cost
given in terms of 103 Fp-multiplications, using S = 0.8M.

Remark 11.6.2. We analyse and optimise the cost of verification with respect to Fp-operations.
However, primes of the form p = 2f · c − 1 are considered to be particularly suitable for fast
optimised finite field arithmetic, especially when f is large [11]. Hence, we expect primes like
p4 to improve significantly more in comparison to p1973 in low-level field arithmetic, leading to a
larger speed-up than predicted in Table 11.4. Furthermore, other low-level improvements, such as
fast non-constant time GCD for inversions or Legendre symbols, will improve the performance of
primes in terms of cycles, which is unaccounted for by our cost metric.

Remark 11.6.3. In recent joint work with Eriksen, Meyer and Rodríguez-Henríquez [277], we
find better AprèsSQI-friendly primes according to a more accurate cost metric.

256

Chapter 12

Conclusion

In this thesis, we explored three facets of isogeny-based cryptography: the security of the underlying
hardness assumptions; the efficiency of two-dimensional isogenies; and the design and efficiency of
SQIsign.

We began in Part II by exploring the concrete security of the dimension-g superspecial isogeny
problem for g = 1 and 2. In Chapter 7, we focus on the case g = 1 and introduced SuperSolver, a
new attack against the isogeny problem which boasts a better concrete complexity than the Delfs–
Galbraith algorithm. More specifically, for cryptographic-sized primes p ≈ 2256, we obtain around
an 8 times reduction in complexity. Obtaining a grasp on the concrete complexity of SuperSolver
allows us to better understand the security of isogeny-based schemes, such as SQIsign.

The attack strategy from this chapter uses only one-dimensional isogenies. In contrast, the
SIDH attacks exhibit that higher dimensional isogenies are crucial to understand the dimension-1
superspecial isogeny graph X1(Fp). Though this has only been exploited when extra information is
available to the attacker, it would be interesting to revisit the work in Chapter 7 with this renewed
perspective. In particular, it is natural to ask whether using higher dimensional isogenies can
extend the SuperSolver attack to be more powerful. This leads us to the following open question:

Can higher dimensional isogenies help us understand the hardness of the dimension-1
superspecial isogeny problem?

Moving forward to Chapter 8, we then studied the dimension-2 superspecial isogeny problem. We
introduced SplitSearcher, a classical attack with lower concrete complexity than the previous state-
of-the-art: the Costello–Smith algorithm. The improvement exhibited in this chapter is greater:
for cryptographic-sized primes p ≈ 2128, we decrease the complexity by a factor of around 25 to
29. We remark that the algorithms in this chapter also enable a user to efficiently traverse the
(2, 2)-isogeny graph X2(Fp, 2) and explore the expansion properties of X2(Fp, 2).

Though the work in Chapter 8 makes a big step towards understanding the dimension-2 graph,
there is still much more to study. To accompany the increased use of higher dimensional isogenies in
cryptography, it is crucial to obtain a better grasp of the security of the isogeny problem in higher
dimensions. Another approach we could take to achieve this is to instead study the endomorphism
ring problem in dimension 2 and determine how it relates to the isogeny problem. This is known
for dimension 1, but remains unclear for higher dimensions.

Is the dimension-2 superspecial isogeny problem equivalent to the endomorphism ring
problem for p.p. abelian surfaces?

Turning towards constructive applications of two-dimensional isogenies, in Part III we gave efficient
formulæ for (3, 3)-isogenies. In joint work with Flynn [94], we extend these ideas to give a descrip-

257

tion of a general method to construct (N,N)-isogenies between Kummer surfaces with efficiently
computable biquadratic forms, for any odd N , using purely algebraic methods. This makes the
method described in Section 9.2 effective for all odd N . These techniques could prove useful in
developing algorithms to explore the graphs X2(Fp, N) for prime N and gain fruitful experimental
data on its expansion properties. Furthermore, as isogeny-based cryptography increasingly relies
on two-dimensional isogenies, our formulæ could prove useful for future constructions.

Can we construct efficient isogeny-based primitives (other than hash functions) using
(N,N)-isogenies for primes N ̸= 2?

In the final part of this thesis, we focused on a particular signature scheme built from isogenies:
SQIsign, which boasts the smallest combined public key and signature size of all post-quantum
signature schemes. The main disadvantage of SQIsign is that its signing and verification algorithms
are slow, especially when compared to lattice-based alternatives. In Part IV, we presented work
that aims to alleviate some inefficiencies in SQIsign. Firstly, in Chapter 10, we proposed new
SQIsign-friendly parameters for all security levels, which mainly target applications where fast
signing is a priority.

Due to its inherent characteristics, SQIsign is also attractive in scenarios that require small
signatures and fast verification. With this in mind, in Chapter 11, we propose AprèsSQI, a variant of
SQIsign that prioritises verification without sacrificing the compactness of the signatures. In recent
joint work with Eriksen, Meyer and Rodríguez-Henríquez [277], we use similar methods to those
described in Chapter 10 to obtain new parameters for SQIsign adapted for efficient verification.
These parameters were used in the Round 1 NIST submission of SQIsign. Since AprèsSQI was
published, two-dimensional variants of SQIsign, called SQIsign2D [17, 142, 247], were made public.
SQIsign2D has faster signing and verification, and more compact signatures than SQIsign. In
light of this, due to the lack of an optimised implementation of AprèsSQI in a low-level language
(at the time of writing), it is unclear whether AprèsSQI can still provide an interesting solution
for applications where verification time is crucial, particularly when considering uncompressed
signatures. A natural question arises:

For what applications is one-dimensional SQIsign, or its variant AprèsSQI, the best
choice?

A recent paper on constructing ring signatures [46] gives interesting insight to this question: the
authors construct a linear ring signature from a variant of SQIsign, rather than SQIsign2D. Indeed,
the method for proving that the underlying identification scheme of SQIsign2D is zero-knowledge
is not compatible with the current methods of constructing secure ring signatures. We further
remark that, if future research develops better KLPT algorithms (where the output ideal has close-
to-optimal norm), one-dimensional SQIsign verification will likely become more efficient than that
of its higher dimensional variants. Thus, research on one-dimensional SQIsign remains important.

We end by taking a step back and viewing SQIsign in light of its submission to NIST’s alternate
call for signature schemes. Working with isogenies requires fairly significant mathematical knowl-
edge, just as working with pairings did before the development of an abstraction of a bilinear map.
As such, constructing isogeny-based protocols presents a high barrier of entry for cryptographers
not familiar with these particular areas of mathematics. If SQIsign is to be standardised, we must

258

endeavour to close the gap between theoreticians and the practitioners who will eventually be
tasked to implement these algorithms securely and efficiently. This is crucial for the cryptographic
community to be confident in the security SQIsign, thus enabling its widespread adoption. On that
note, we end this thesis with a question:

Can we obtain a satisfying abstraction of SQIsign (and its variants) that will help prac-
titioners understand and implement its algorithms more easily and securely?

259

Bibliography

[1] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez. “Karatsuba-
based square-root Vélu’s formulas applied to two isogeny-based protocols”. In: Journal of
Cryptographic Engineering 13.1 (2023), pp. 89–106. doi: 10.1007/S13389-022-00293-Y.

[2] Yusuke Aikawa, Ryokichi Tanaka, and Takuya Yamauchi. “Isogeny graphs on superspecial
abelian varieties: eigenvalues and connection to Bruhat–Tits buildings”. In: Canadian Jour-
nal of Mathematics. Journal Canadien de Mathématiques 76.6 (2024), pp. 1891–1916. issn:
0008-414X,1496-4279. doi: 10.4153/S0008414X23000676.

[3] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. “Cryptographic
Group Actions and Applications”. In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai
and Huaxiong Wang. Vol. 12492. LNCS. Springer, Cham, Dec. 2020, pp. 411–439. doi:
10.1007/978-3-030-64834-3_14.

[4] Tom M. Apostol. “Resultants of cyclotomic polynomials”. In: Proceedings of the American
Mathematical Society 24 (1970), pp. 457–462. issn: 0002-9939,1088-6826. doi: 10.2307/
2037387.

[5] Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis
Scholl, and Jana Sotáková. “Adventures in supersingularland”. In: Experimental Mathemat-
ics 32.2 (2023), pp. 241–268. issn: 1058-6458,1944-950X. doi: 10.1080/10586458.2021.
1926009.

[6] Michael Artin. Algebra. Prentice Hall Inc., Englewood Cliffs, NJ, 1991, pp. xviii+618. isbn:
0-13-004763-5.

[7] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. “CSI-SharK: CSI-FiSh
with Sharing-friendly Keys”. In: ACISP 23. Ed. by Leonie Simpson and Mir Ali Rezazadeh
Baee. Vol. 13915. LNCS. Springer, Cham, July 2023, pp. 471–502. doi: 10.1007/978-3-
031-35486-1_21.

[8] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. “Practical Robust
DKG Protocols for CSIDH”. In: ACNS 23International Conference on Applied Cryptography
and Network Security, Part II. Ed. by Mehdi Tibouchi and Xiaofeng Wang. Vol. 13906.
LNCS. Springer, Cham, June 2023, pp. 219–247. doi: 10.1007/978-3-031-33491-7_9.

[9] Roland Auer and Jaap Top. “Legendre elliptic curves over finite fields”. In: Journal of
Number Theory 95.2 (2002), pp. 303–312. issn: 0022-314X,1096-1658.

[10] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir
Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, et al. “Supersingular
isogeny key encapsulation”. In: Submission to the NIST Post-Quantum Standardization
project 152 (2017), pp. 154–155.

260

https://doi.org/10.1007/S13389-022-00293-Y
https://doi.org/10.4153/S0008414X23000676
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.2307/2037387
https://doi.org/10.2307/2037387
https://doi.org/10.1080/10586458.2021.1926009
https://doi.org/10.1080/10586458.2021.1926009
https://doi.org/10.1007/978-3-031-35486-1_21
https://doi.org/10.1007/978-3-031-35486-1_21
https://doi.org/10.1007/978-3-031-33491-7_9

[11] Jean-Claude Bajard and Sylvain Duquesne. “Montgomery-friendly primes and applications
to cryptography”. In: Journal of Cryptographic Engineering 11.4 (2021), pp. 399–415. doi:
10.1007/s13389-021-00260-z.

[12] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael
Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH: faster constant-time CSIDH”. In:
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.4 (2021),
pp. 351–387. doi: 10.46586/TCHES.V2021.I4.351-387.

[13] Gustavo Banegas, Valerie Gilchrist, Anaëlle Le Dévéhat, and Benjamin Smith. “Fast and
Frobenius: Rational Isogeny Evaluation over Finite Fields”. In: LATINCRYPT 2023. Ed.
by Abdelrahaman Aly and Mehdi Tibouchi. Vol. 14168. LNCS. Springer, Cham, Oct. 2023,
pp. 129–148. doi: 10.1007/978-3-031-44469-2_7.

[14] Efrat Bank, Catalina Camacho-Navarro, Kirsten Eisenträger, Travis Morrison, and Jennifer
Park. “Cycles in the supersingular ℓ-isogeny graph and corresponding endomorphisms”. In:
Research directions in number theory—Women in Numbers IV. Vol. 19. Assoc. Women
Math. Ser. Springer, Cham, 2019, pp. 41–66. isbn: 978-3-030-19478-9; 978-3-030-19477-2.
doi: 10.1007/978-3-030-19478-9_2.

[15] William D. Banks and Igor E. Shparlinski. “Integers with a large smooth divisor”. In: In-
tegers. Electronic Journal of Combinatorial Number Theory 7 (2007), A17, 11. issn: 1553-
1732.

[16] Andrea Basso. POKE: A Framework for Efficient PKEs, Split KEMs, and OPRFs from
Higher-dimensional Isogenies. Cryptology ePrint Archive, Paper 2024/624. 2024. url:
https://eprint.iacr.org/2024/624.

[17] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino, Giacomo
Pope, Damien Robert, and Benjamin Wesolowski. “SQIsign2D–West”. In: Advances in Cryp-
tology – ASIACRYPT 2024. Ed. by Kai-Min Chung and Yu Sasaki. Singapore: Springer
Nature Singapore, 2025, pp. 339–370. doi: 10.1007/978-981-96-0891-1_11.

[18] Andrea Basso and Tako Boris Fouotsa. “New SIDH Countermeasures for a More Efficient
Key Exchange”. In: ASIACRYPT 2023, Part VIII. Ed. by Jian Guo and Ron Steinfeld.
Vol. 14445. LNCS. Springer, Singapore, Dec. 2023, pp. 208–233. doi: 10.1007/978-981-
99-8742-9_7.

[19] Andrea Basso, Luciano Maino, and Giacomo Pope. “FESTA: Fast Encryption from Su-
persingular Torsion Attacks”. In: ASIACRYPT 2023, Part VII. Ed. by Jian Guo and Ron
Steinfeld. Vol. 14444. LNCS. Springer, Singapore, Dec. 2023, pp. 98–126. doi: 10.1007/978-
981-99-8739-9_4.

[20] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols”. In: ACM CCS 93. Ed. by Dorothy E. Denning, Raymond Pyle,
Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby. ACM Press, Nov. 1993, pp. 62–73. doi:
10.1145/168588.168596.

261

https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.1007/978-3-031-44469-2_7
https://doi.org/10.1007/978-3-030-19478-9_2
https://eprint.iacr.org/2024/624
https://doi.org/10.1007/978-981-96-0891-1_11
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8742-9_7
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1145/168588.168596

[21] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006. Ed. by Serge Vaudenay.
Vol. 4004. LNCS. Springer, Berlin, Heidelberg, 2006, pp. 409–426. doi: 10.1007/11761679_
25.

[22] Benjamin Bencina, Péter Kutas, Simon-Philipp Merz, Christophe Petit, Miha Stopar, and
Charlotte Weitkämper. “Improved Algorithms for Finding Fixed-Degree Isogenies Between
Supersingular Elliptic Curves”. In: Advances in Cryptology – CRYPTO 2024 – 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Pro-
ceedings, Part V. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14924. Lecture Notes in
Computer Science. Springer, 2024, pp. 183–217. doi: 10.1007/978-3-031-68388-6_8.

[23] Elwyn R. Berlekamp. “Factoring polynomials”. In: Proceedings of the Third Southeastern
Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca
Raton, Fla., 1972). Florida Atlantic University, Boca Raton, FL, 1972, pp. 1–7.

[24] Daniel J. Bernstein. Differential addition chains. 2006. url: http://cr.yp.to/ecdh/
diffchain-20060219.pdf.

[25] Daniel J. Bernstein. Differential addition chains. 2006. url: http://cr.yp.to/ecdh/
diffchain-20060219.pdf.

[26] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Peter Schwabe. “Kum-
mer Strikes Back: New DH Speed Records”. In: ASIACRYPT 2014, Part I. Ed. by Palash
Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, Berlin, Heidelberg, Dec. 2014, pp. 317–
337. doi: 10.1007/978-3-662-45611-8_17.

[27] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. “Faster compu-
tation of isogenies of large prime degree”. In: ANTS XIV—Proceedings of the Fourteenth
Algorithmic Number Theory Symposium. Vol. 4. Open Book Series. Math. Sci. Publ., Berke-
ley, CA, 2020, pp. 39–55. isbn: 978-1-935107-08-8; 978-1-935107-07-1. doi: 10.2140/obs.
2020.4.39.

[28] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld,
and Peter Schwabe. “The SPHINCS+ Signature Framework”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz. ACM, 2019, pp. 2129–2146. doi: 10.1145/3319535.3363229.

[29] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In: CRYPTO 2022,
Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Cham,
Aug. 2022, pp. 464–479. doi: 10.1007/978-3-031-15979-4_16.

[30] Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren. “CSI-RAShi: Dis-
tributed Key Generation for CSIDH”. In: Post-Quantum Cryptography - 12th International
Workshop, PQCrypto 2021. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Springer,
Cham, 2021, pp. 257–276. doi: 10.1007/978-3-030-81293-5_14.

262

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-031-68388-6_8
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-030-81293-5_14

[31] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl: Logarithmic
(Linkable) Ring Signatures from Isogenies and Lattices”. In: ASIACRYPT 2020, Part II.
Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS. Springer, Cham, Dec. 2020,
pp. 464–492. doi: 10.1007/978-3-030-64834-3_16.

[32] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Efficient Isogeny
Based Signatures Through Class Group Computations”. In: ASIACRYPT 2019, Part I. Ed.
by Steven D. Galbraith and Shiho Moriai. Vol. 11921. LNCS. Springer, Cham, Dec. 2019,
pp. 227–247. doi: 10.1007/978-3-030-34578-5_9.

[33] Jean-François Biasse, David Jao, and Anirudh Sankar. “A Quantum Algorithm for Com-
puting Isogenies between Supersingular Elliptic Curves”. In: INDOCRYPT 2014. Ed. by
Willi Meier and Debdeep Mukhopadhyay. Vol. 8885. LNCS. Springer, Cham, Dec. 2014,
pp. 428–442. doi: 10.1007/978-3-319-13039-2_25.

[34] Timo Bingmann. TLX: Collection of Sophisticated C++ Data Structures, Algorithms, and
Miscellaneous Helpers. https://panthema.net/tlx, retrieved Oct. 7, 2020. 2018.

[35] Gaëtan Bisson. “Endomorphism rings in cryptography”. PhD thesis. Institut National Poly-
technique de Lorraine-INPL; Technische Universiteit Eindhoven, 2011.

[36] Gaëtan Bisson, Romain Cosset, and Damien Robert. AVIsogenies – a library for computing
isogenies between abelian varieties. URL: http://avisogenies.gforge.inria.fr. 2012.

[37] Oskar Bolza. “On binary sextics with linear transformations into themselves”. In: American
Journal of Mathematics 10.1 (1887), pp. 47–70. issn: 0002-9327. doi: 10.2307/2369402.

[38] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In:
CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer, Berlin, Heidelberg,
Aug. 2004, pp. 41–55. doi: 10.1007/978-3-540-28628-8_3.

[39] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. “Random Oracles in a Quantum World”. In: ASIACRYPT 2011. Ed. by Dong
Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, Berlin, Heidelberg, Dec. 2011,
pp. 41–69. doi: 10.1007/978-3-642-25385-0_3.

[40] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing”.
In: CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Berlin, Heidelberg, Aug.
2001, pp. 213–229. doi: 10.1007/3-540-44647-8_13.

[41] Dan Boneh, Dmitry Kogan, and Katharine Woo. “Oblivious Pseudorandom Functions from
Isogenies”. In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12492. LNCS. Springer, Cham, Dec. 2020, pp. 520–550. doi: 10.1007/978-3-030-
64834-3_18.

[42] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pairing”. In:
ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Springer, Berlin, Heidelberg, Dec.
2001, pp. 514–532. doi: 10.1007/3-540-45682-1_30.

[43] Dan Boneh and Hovav Shacham. “Group Signatures With Verifier-Local Revocation”. In:
ACM CCS 2004. Ed. by Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel.
ACM Press, Oct. 2004, pp. 168–177. doi: 10.1145/1030083.1030106.

263

https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-319-13039-2_25
https://panthema.net/tlx
http://avisogenies.gforge.inria.fr
https://doi.org/10.2307/2369402
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1145/1030083.1030106

[44] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of CSIDH”. In:
EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS.
Springer, Cham, May 2020, pp. 493–522. doi: 10.1007/978-3-030-45724-2_17.

[45] Zenon I. Borevich and Igor R. Shafarevich. Number theory. Vol. Vol. 20. Pure and Applied
Mathematics. Translated from the Russian by Newcomb Greenleaf. Academic Press, New
York-London, 1966, pp. x+435.

[46] Giacomo Borin, Yi-Fu Lai, and Antonin Leroux. Erebor and Durian: Full Anonymous Ring
Signatures from Quaternions and Isogenies. Cryptology ePrint Archive, Paper 2024/1185.
2024. url: https://eprint.iacr.org/2024/1185.

[47] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM”. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018. IEEE. IEEE, 2018, pp. 353–
367. doi: 10.1109/EUROSP.2018.00032.

[48] Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. “Fast Cryptography
in Genus 2”. In: Journal of Cryptology 29.1 (Jan. 2016), pp. 28–60. doi: 10.1007/s00145-
014-9188-7.

[49] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra system. I. The
user language”. In: vol. 24. 3-4. Computational algebra and number theory (London, 1993).
1997, pp. 235–265. doi: 10.1006/jsco.1996.0125.

[50] Jean-Benoît Bost and Jean-François Mestre. “Moyenne arithmético-géométrique et périodes
des courbes de genre 1 et 2”. In: Gazette des Mathématiciens 38 (1988), pp. 36–64. issn:
0224-8999,2275-0622.

[51] Nicolas Bourbaki. Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Springer-
Verlag, Berlin, 1998, pp. xxiv+709. isbn: 3-540-64243-9.

[52] Bradley Wayne Brock. Superspecial curves of genera two and three. Thesis (Ph.D.)–
Princeton University. ProQuest LLC, Ann Arbor, MI, 1993, p. 69.

[53] Reinier Bröker, Everett W. Howe, Kristin E. Lauter, and Peter Stevenhagen. “Genus-2
curves and Jacobians with a given number of points”. In: LMS Journal of Computation and
Mathematics 18.1 (2015), pp. 170–197. issn: 1461-1570. doi: 10.1112/S1461157014000461.

[54] Fouazou Lontouo Perez Broon and Emmanuel Fouotsa. Analogue of Vélu’s Formulas for
Computing Isogenies over Hessian Model of Elliptic Curves. Cryptology ePrint Archive,
Report 2019/1480. 2019. url: https://eprint.iacr.org/2019/1480.

[55] N. G. de Bruijn. “On the number of positive integers ≤ x and free prime factors > y. II”.
In: Indag. Math. 28 (1966). Nederl. Akad. Wetensch. Proc. Ser. A 69, pp. 239–247.

[56] Nils Bruin and Kevin Doerksen. Electronic resources. http://www.cecm.sfu.ca/~nbruin/
splitigusa/. Accessed Septemeber 2022. 2011.

[57] Nils Bruin and Kevin Doerksen. “The arithmetic of genus two curves with (4, 4)-split Ja-
cobians”. In: Canadian Journal of Mathematics. Journal Canadien de Mathématiques 63.5
(2011), pp. 992–1024. issn: 0008-414X,1496-4279. doi: 10.4153/CJM-2011-039-3.

264

https://doi.org/10.1007/978-3-030-45724-2_17
https://eprint.iacr.org/2024/1185
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1007/s00145-014-9188-7
https://doi.org/10.1007/s00145-014-9188-7
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1112/S1461157014000461
https://eprint.iacr.org/2019/1480
http://www.cecm.sfu.ca/~nbruin/splitigusa/
http://www.cecm.sfu.ca/~nbruin/splitigusa/
https://doi.org/10.4153/CJM-2011-039-3

[58] Nils Bruin, E. Victor Flynn, and Damiano Testa. “Descent via (3, 3)-isogeny on Jacobians of
genus 2 curves”. In: Acta Arithmetica 165.3 (2014), pp. 201–223. issn: 0065-1036,1730-6264.
doi: 10.4064/aa165-3-1.

[59] Jan Hendrik Bruinier, Ken Ono, and Andrew V. Sutherland. “Class polynomials for non-
holomorphic modular functions”. In: Journal of Number Theory 161 (2016), pp. 204–229.
issn: 0022-314X,1096-1658. doi: 10.1016/j.jnt.2015.07.002.

[60] Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen,
Michael Meyer, Michael Naehrig, and Bruno Sterner. “Cryptographic smooth neighbors”.
In: Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Guangzhou, China, De-
cember 4-8, 2023, Proceedings, Part VII. Vol. 14444. Lecture Notes in Computer Science.
Springer, Singapore, 2023, pp. 190–221. isbn: 978-981-99-8738-2; 978-981-99-8739-9. doi:
10.1007/978-981-99-8739-9_7.

[61] Duncan A. Buell. Binary quadratic forms. Classical theory and modern computations.
Springer-Verlag, New York, 1989, pp. x+247. isbn: 0-387-97037-1. doi: 10.1007/978-

1-4612-4542-1.

[62] Jeffrey Burdges and Luca De Feo. “Delay Encryption”. In: EUROCRYPT 2021, Part I.
Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12696. LNCS. Springer, Cham,
Oct. 2021, pp. 302–326. doi: 10.1007/978-3-030-77870-5_11.

[63] Peter J. Cameron. Introduction to algebra. Second. Oxford University Press, Oxford, 2008,
pp. x+342. isbn: 978-0-19-852793-0.

[64] David G. Cantor. “Computing in the Jacobian of a hyperelliptic curve”. In: Mathematics of
Computation 48.177 (1987), pp. 95–101. issn: 0025-5718,1088-6842. doi: 10.2307/2007876.

[65] David G. Cantor and Hans Zassenhaus. “A new algorithm for factoring polynomials over
finite fields”. In: Mathematics of Computation 36.154 (1981), pp. 587–592. issn: 0025-
5718,1088-6842. doi: 10.2307/2007663.

[66] J. W. S. Cassels and E. Victor Flynn. Prolegomena to a middlebrow arithmetic of curves
of genus 2. Vol. 230. London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1996, pp. xiv+219. isbn: 0-521-48370-0. doi: 10 . 1017 /

CBO9780511526084.

[67] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH”. In:
EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. LNCS.
Springer, Cham, Apr. 2023, pp. 423–447. doi: 10.1007/978-3-031-30589-4_15.

[68] Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: Post-Quantum Cryptog-
raphy - 11th International Conference, PQCrypto 2020. Ed. by Jintai Ding and Jean-Pierre
Tillich. Springer, Cham, 2020, pp. 111–129. doi: 10.1007/978-3-030-44223-1_7.

[69] Wouter Castryck and Thomas Decru. Multiradical isogenies. Cryptology ePrint Archive,
Report 2021/1133. 2021. url: https://eprint.iacr.org/2021/1133.

265

https://doi.org/10.4064/aa165-3-1
https://doi.org/10.1016/j.jnt.2015.07.002
https://doi.org/10.1007/978-981-99-8739-9_7
https://doi.org/10.1007/978-1-4612-4542-1
https://doi.org/10.1007/978-1-4612-4542-1
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.2307/2007876
https://doi.org/10.2307/2007663
https://doi.org/10.1017/CBO9780511526084
https://doi.org/10.1017/CBO9780511526084
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-44223-1_7
https://eprint.iacr.org/2021/1133

[70] Wouter Castryck and Thomas Decru. “Multiradical isogenies”. In: Arithmetic, geometry,
cryptography, and coding theory 2021. Vol. 779. Contemporary Mathematics. Amer. Math.
Soc., Providence, RI, 2022, pp. 57–89. isbn: 978-1-4704-6794-4. doi: 10.1090/conm/779/
15671.

[71] Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren. “Horizontal
Racewalking Using Radical Isogenies”. In: ASIACRYPT 2022, Part II. Ed. by Shweta
Agrawal and Dongdai Lin. Vol. 13792. LNCS. Springer, Cham, Dec. 2022, pp. 67–96. doi:
10.1007/978-3-031-22966-4_3.

[72] Wouter Castryck, Thomas Decru, and Benjamin Smith. “Hash functions from superspecial
genus-2 curves using Richelot isogenies”. In: Journal of Mathematical Cryptology 14.1 (2020),
pp. 268–292. issn: 1862-2976,1862-2984. doi: 10.1515/jmc-2019-0021.

[73] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. “Radical Isogenies”. In: ASI-
ACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS.
Springer, Cham, Dec. 2020, pp. 493–519. doi: 10.1007/978-3-030-64834-3_17.

[74] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. “CSIDH:
An Efficient Post-Quantum Commutative Group Action”. In: ASIACRYPT 2018, Part III.
Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11274. LNCS. Springer, Cham, Dec.
2018, pp. 395–427. doi: 10.1007/978-3-030-03332-3_15.

[75] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De Feo,
Francisco Rodríguez-Henríquez, and Benjamin Smith. “Stronger and Faster Side-Channel
Protections for CSIDH”. In: LATINCRYPT 2019. Ed. by Peter Schwabe and Nicolas Théri-
ault. Vol. 11774. LNCS. Springer, Cham, Oct. 2019, pp. 173–193. doi: 10.1007/978-3-
030-30530-7_9.

[76] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. “Cryptographic Hash Functions
from Expander Graphs”. In: Journal of Cryptology 22.1 (Jan. 2009), pp. 93–113. doi: 10.
1007/s00145-007-9002-x.

[77] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco Rodríguez-
Henríquez. “The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with
low exponents”. In: Journal of Cryptographic Engineering 12.3 (2022), pp. 349–368. doi:
10.1007/S13389-021-00271-W.

[78] Jorge Chavez-Saab, Maria Corte-Real Santos, Jonathan Komada Eriksen, Basil Hess, David
Kohel, Antonin Leroux, Patrick Longa, Michael Meyer, Lorenz Panny, Sikhar Patran-
abis, Christophe Petit, Francisco Rodríguez Henríquez, Sina Schaeffler, and Benjamin
Wesolowski. SQIsign: Algorithm specifications and supporting documentation. 2023. url:
https://csrc.nist.gov/csrc/media/Projects/pqc- dig- sig/documents/round-

1/spec-files/sqisign-spec-web.pdf.

[79] Mingjie Chen, Antonin Leroux, and Lorenz Panny. “SCALLOP-HD: Group Action from
2-Dimensional Isogenies”. In: PKC 2024, Part II. Ed. by Qiang Tang and Vanessa Teague.
Vol. 14603. LNCS. Springer, Cham, Apr. 2024, pp. 190–216. doi: 10.1007/978-3-031-
57725-3_7.

266

https://doi.org/10.1090/conm/779/15671
https://doi.org/10.1090/conm/779/15671
https://doi.org/10.1007/978-3-031-22966-4_3
https://doi.org/10.1515/jmc-2019-0021
https://doi.org/10.1007/978-3-030-64834-3_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/S13389-021-00271-W
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.1007/978-3-031-57725-3_7

[80] Jesús-Javier Chi-Domínguez and Krijn Reijnders. “Fully Projective Radical Isogenies in
Constant-Time”. In: CT-RSA 2022. Ed. by Steven D. Galbraith. Vol. 13161. LNCS.
Springer, Cham, Mar. 2022, pp. 73–95. doi: 10.1007/978-3-030-95312-6_4.

[81] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. “Optimal strategies for
CSIDH”. In: Advances in Mathematics of Communications 16.2 (2022), pp. 383–411. issn:
1930-5346,1930-5338. doi: 10.3934/amc.2020116.

[82] Andrew Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic curve isogenies
in quantum subexponential time”. In: Journal of Mathematical Cryptology 8.1 (2014), pp. 1–
29. issn: 1862-2976,1862-2984. doi: 10.1515/jmc-2012-0016.

[83] David V. Chudnovsky and Gregory V. Chudnovsky. “Sequences of numbers generated by
addition in formal groups and new primality and factorization tests”. In: Adv. in Appl. Math.
7.4 (1986), pp. 385–434. issn: 0196-8858,1090-2074. doi: 10.1016/0196-8858(86)90023-0.

[84] Henri Cohen. A course in computational algebraic number theory. Vol. 138. Graduate Texts
in Mathematics. Springer-Verlag, Berlin, 1993, pp. xii+534. isbn: 3-540-55640-0. doi: 10.
1007/978-3-662-02945-9.

[85] Paul M. Cohn. Algebra, Vol. 1. John Wiley & Sons, London-New York-Sydney, 1974,
pp. xii+321.

[86] J. B. Conrey, M. A. Holmstrom, and T. L. McLaughlin. “Smooth neighbors”. In: Experi-
mental Mathematics 22.2 (2013), pp. 195–202. issn: 1058-6458,1944-950X. doi: 10.1080/
10586458.2013.768483.

[87] John B. Conrey and Mark A. Holmstrom. “Smooth values of quadratic polynomials”. In:
Experimental Mathematics 30.4 (2021), pp. 447–452. issn: 1058-6458,1944-950X. doi: 10.
1080/10586458.2018.1559775.

[88] Maria Corte-Real Santos, Craig Costello, and Sam Frengley. “An Algorithm for Efficient
Detection of (N,N)-Splittings and Its Application to the Isogeny Problem in Dimension
2”. In: Public-Key Cryptography - PKC 2024 - 27th IACR International Conference on
Practice and Theory of Public-Key Cryptography, Sydney, NSW, Australia, April 15-17,
2024, Proceedings, Part III. Ed. by Qiang Tang and Vanessa Teague. Vol. 14603. Lecture
Notes in Computer Science. Springer, 2024, pp. 157–189. doi: 10.1007/978-3-031-57725-
3_6.

[89] Maria Corte-Real Santos, Craig Costello, and Michael Naehrig. “On Cycles of Pairing-
Friendly Abelian Varieties”. In: Advances in Cryptology - CRYPTO 2024 - 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Pro-
ceedings, Part IX. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14928. Lecture Notes in
Computer Science. Springer, 2024, pp. 221–253. doi: 10.1007/978-3-031-68400-5_7.

[90] Maria Corte-Real Santos, Craig Costello, and Jia Shi. “Accelerating the Delfs-Galbraith
algorithm with fast subfield root detection”. In: Advances in Cryptology - CRYPTO 2022
- 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part III. Vol. 13509. Lecture Notes in Computer

267

https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.3934/amc.2020116
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1016/0196-8858(86)90023-0
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2018.1559775
https://doi.org/10.1080/10586458.2018.1559775
https://doi.org/10.1007/978-3-031-57725-3_6
https://doi.org/10.1007/978-3-031-57725-3_6
https://doi.org/10.1007/978-3-031-68400-5_7

Science. Springer, Cham, 2022, pp. 285–314. isbn: 978-3-031-15981-7; 978-3-031-15982-4.
doi: 10.1007/978-3-031-15982-4_10.

[91] Maria Corte-Real Santos, Craig Costello, and Benjamin Smith. “Efficient (3, 3)-isogenies on
fast Kummer surfaces”. In: (2024). arXiv: 2402.01223 [cs.CR]. url: https://arxiv.org/
abs/2402.01223.

[92] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn Reijnders.
“AprèsSQI: extra fast verification for SQIsign using extension-field signing”. In: Advances in
Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceed-
ings, Part I. Vol. 14651. Lecture Notes in Computer Science. Springer, Cham, 2024, pp. 63–
93. isbn: 978-3-031-58715-3; 978-3-031-58716-0. doi: 10.1007/978-3-031-58716-0_3.

[93] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn Reijnders.
AprèsSQI: Extra Fast Verification for SQIsign Using Extension-Field Signing. Artifact at
EUROCRYPT 2024. 2024. url: https://artifacts.iacr.org/eurocrypt/2024/a4/.

[94] Maria Corte-Real Santos and E. Victor Flynn. Isogenies on Kummer Surfaces. 2024. arXiv:
2409.14819 [math.NT]. url: https://arxiv.org/abs/2409.14819.

[95] Maria Corte-Real Santos and Krijn Reijnders. Return of the Kummer: a Toolbox for Genus-
2 Cryptography. Cryptology ePrint Archive, Paper 2024/948. 2024. url: https://eprint.
iacr.org/2024/948.

[96] Romain Cosset. “Applications des fonctions thêta à la cryptographie sur courbes hyperel-
liptiques”. PhD thesis. Université Henri Poincaré - Nancy, 2011. url: https://theses.
hal.science/tel-00642951.

[97] Romain Cosset. “Factorization with genus 2 curves”. In: Mathematics of Computation 79.270
(2010), pp. 1191–1208. issn: 0025-5718,1088-6842. doi: 10.1090/S0025-5718-09-02295-9.

[98] Romain Cosset and Damien Robert. “Computing (ℓ, ℓ)-isogenies in polynomial time on
Jacobians of genus 2 curves”. In: Mathematics of Computation 84.294 (2015), pp. 1953–
1975. issn: 0025-5718,1088-6842. doi: 10.1090/S0025-5718-2014-02899-8.

[99] Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion”. In:
ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS.
Springer, Cham, Dec. 2020, pp. 440–463. doi: 10.1007/978-3-030-64834-3_15.

[100] Craig Costello. “Computing Supersingular Isogenies on Kummer Surfaces”. In: ASI-
ACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11274. LNCS.
Springer, Cham, Dec. 2018, pp. 428–456. doi: 10.1007/978-3-030-03332-3_16.

[101] Craig Costello. Pairings for beginners. Technical Report. 2024. url: https://static1.
squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/

1609798774687/PairingsForBeginners.pdf.

[102] Craig Costello and Hüseyin Hisil. “A Simple and Compact Algorithm for SIDH with Arbi-
trary Degree Isogenies”. In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi and Thomas
Peyrin. Vol. 10625. LNCS. Springer, Cham, Dec. 2017, pp. 303–329. doi: 10.1007/978-3-
319-70697-9_11.

268

https://doi.org/10.1007/978-3-031-15982-4_10
https://arxiv.org/abs/2402.01223
https://arxiv.org/abs/2402.01223
https://arxiv.org/abs/2402.01223
https://doi.org/10.1007/978-3-031-58716-0_3
https://artifacts.iacr.org/eurocrypt/2024/a4/
https://arxiv.org/abs/2409.14819
https://arxiv.org/abs/2409.14819
https://eprint.iacr.org/2024/948
https://eprint.iacr.org/2024/948
https://theses.hal.science/tel-00642951
https://theses.hal.science/tel-00642951
https://doi.org/10.1090/S0025-5718-09-02295-9
https://doi.org/10.1090/S0025-5718-2014-02899-8
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-03332-3_16
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11

[103] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Ur-
banik. “Efficient Compression of SIDH Public Keys”. In: EUROCRYPT 2017, Part I. Ed.
by Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10210. LNCS. Springer, Cham,
2017, pp. 679–706. doi: 10.1007/978-3-319-56620-7_24.

[104] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algorithms for Supersingular
Isogeny Diffie-Hellman”. In: CRYPTO 2016, Part I. Ed. by Matthew Robshaw and Jonathan
Katz. Vol. 9814. LNCS. Springer, Berlin, Heidelberg, Aug. 2016, pp. 572–601. doi: 10.1007/
978-3-662-53018-4_21.

[105] Craig Costello, Michael Meyer, and Michael Naehrig. “Sieving for Twin Smooth Integers
with Solutions to the Prouhet-Tarry-Escott Problem”. In: EUROCRYPT 2021, Part I. Ed.
by Anne Canteaut and François-Xavier Standaert. Vol. 12696. LNCS. Springer, Cham, Oct.
2021, pp. 272–301. doi: 10.1007/978-3-030-77870-5_10.

[106] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic - The case
of large characteristic fields”. In: Journal of Cryptographic Engineering 8.3 (2018), pp. 227–
240. doi: 10.1007/S13389-017-0157-6.

[107] Craig Costello and Benjamin Smith. “The Supersingular Isogeny Problem in Genus 2 and
Beyond”. In: Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020.
Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Cham, 2020, pp. 151–168. doi: 10.
1007/978-3-030-44223-1_9.

[108] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Paper
2006/291. 2006. url: https://eprint.iacr.org/2006/291.

[109] Jean-Marc Couveignes and Tony Ezome. “Computing functions on Jacobians and their
quotients”. In: LMS Journal of Computation and Mathematics 18.1 (2015), pp. 555–577.
issn: 1461-1570. doi: 10.1112/S1461157015000169.

[110] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Third. Un-
dergraduate Texts in Mathematics. An introduction to computational algebraic geometry
and commutative algebra. Springer, New York, 2007, pp. xvi+551. isbn: 978-0-387-35650-1;
0-387-35650-9. doi: 10.1007/978-0-387-35651-8.

[111] David A. Cox. Primes of the form x2+ny2. Second. Pure and Applied Mathematics (Hobo-
ken). Fermat, class field theory, and complex multiplication. John Wiley & Sons Inc., Hobo-
ken, NJ, 2013, pp. xviii+356. isbn: 978-1-118-39018-4. doi: 10.1002/9781118400722.

[112] Daniele Cozzo and Nigel P. Smart. “Sashimi: Cutting up CSI-FiSh Secret Keys to Pro-
duce an Actively Secure Distributed Signing Protocol”. In: Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020. Ed. by Jintai Ding and Jean-Pierre Tillich.
Springer, Cham, 2020, pp. 169–186. doi: 10.1007/978-3-030-44223-1_10.

[113] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department for Com-
puter Science. 2002. url: https://www.cs.au.dk/~ivan/Sigma.pdf.

[114] Thinh Dang and Dustin Moody. Twisted Hessian Isogenies. Cryptology ePrint Archive,
Report 2019/1003. 2019. url: https://eprint.iacr.org/2019/1003.

269

https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/S13389-017-0157-6
https://doi.org/10.1007/978-3-030-44223-1_9
https://doi.org/10.1007/978-3-030-44223-1_9
https://eprint.iacr.org/2006/291
https://doi.org/10.1112/S1461157015000169
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1002/9781118400722
https://doi.org/10.1007/978-3-030-44223-1_10
https://www.cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2019/1003

[115] Pierrick Dartois. Fast computation of 2-isogenies in dimension 4 and cryptographic appli-
cations. Cryptology ePrint Archive, Paper 2024/1180. 2024. url: https://eprint.iacr.
org/2024/1180.

[116] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski. “SQIsignHD:
New Dimensions in Cryptography”. In: EUROCRYPT 2024, Part I. Ed. by Marc Joye and
Gregor Leander. Vol. 14651. LNCS. Springer, Cham, May 2024, pp. 3–32. doi: 10.1007/
978-3-031-58716-0_1.

[117] Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert. “An Algorithmic
Approach to (2, 2)-Isogenies in the Theta Model and Applications to Isogeny-Based Cryp-
tography”. In: Advances in Cryptology – ASIACRYPT 2024. Ed. by Kai-Min Chung and
Yu Sasaki. Singapore: Springer Nature Singapore, 2025, pp. 304–338. doi: 10.1007/978-
981-96-0891-1_10.

[118] Luca De Feo. “Exploring isogeny graphs”. In: Habilitation á diriger des recherches. Université
de Versailles Saint-Quentin-en-Yvelines (2018). url: https://defeo.lu/hdr/.

[119] Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig. “SIDH Proof of
Knowledge”. In: ASIACRYPT 2022, Part II. Ed. by Shweta Agrawal and Dongdai Lin.
Vol. 13792. LNCS. Springer, Cham, Dec. 2022, pp. 310–339. doi: 10.1007/978-3-031-
22966-4_11.

[120] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz,
Lorenz Panny, and Benjamin Wesolowski. “SCALLOP: Scaling the CSI-FiSh”. In: Public-
Key Cryptography - PKC 2023 - 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023, Proceedings, Part
I. Vol. 13940. Lecture Notes in Computer Science. Springer, Cham, 2023, pp. 345–375. isbn:
978-3-031-31367-7; 978-3-031-31368-4. doi: 10.1007/978-3-031-31368-4_13.

[121] Luca De Feo, Tako Boris Fouotsa, and Lorenz Panny. “Isogeny Problems with Level Struc-
ture”. In: EUROCRYPT 2024, Part VII. Ed. by Marc Joye and Gregor Leander. Vol. 14657.
LNCS. Springer, Cham, May 2024, pp. 181–204. doi: 10.1007/978-3-031-58754-2_7.

[122] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from Class
Group Actions”. In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11478. LNCS. Springer, Cham, May 2019, pp. 759–789. doi: 10.1007/978-3-030-
17659-4_26.

[123] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology 8.3 (2014),
pp. 209–247. doi: 10.1515/JMC-2012-0015.

[124] Luca De Feo, Jean Kieffer, and Benjamin Smith. “Towards Practical Key Exchange from
Ordinary Isogeny Graphs”. In: ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and
Steven Galbraith. Vol. 11274. LNCS. Springer, Cham, Dec. 2018, pp. 365–394. doi: 10.
1007/978-3-030-03332-3_14.

270

https://eprint.iacr.org/2024/1180
https://eprint.iacr.org/2024/1180
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-981-96-0891-1_10
https://doi.org/10.1007/978-981-96-0891-1_10
https://defeo.lu/hdr/
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-58754-2_7
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/JMC-2012-0015
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14

[125] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski.
“SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies”. In: ASI-
ACRYPT 2020, Part I. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12491. LNCS.
Springer, Cham, Dec. 2020, pp. 64–93. doi: 10.1007/978-3-030-64837-4_3.

[126] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski. “New Algorithms
for the Deuring Correspondence - Towards Practical and Secure SQISign Signatures”. In:
EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. LNCS.
Springer, Cham, Apr. 2023, pp. 659–690. doi: 10.1007/978-3-031-30589-4_23.

[127] Luca De Feo and Michael Meyer. “Threshold Schemes from Isogeny Assumptions”. In:
PKC 2020, Part II. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vas-
silis Zikas. Vol. 12111. LNCS. Springer, Cham, May 2020, pp. 187–212. doi: 10.1007/978-
3-030-45388-6_7.

[128] Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako Boris Fouotsa, Péter Kutas, An-
tonin Leroux, Christophe Petit, Javier Silva, and Benjamin Wesolowski. “Séta: supersingular
encryption from torsion attacks”. In: Advances in Cryptology - ASIACRYPT 2021 - 27th
International Conference on the Theory and Application of Cryptology and Information Se-
curity, Singapore, December 6-10, 2021, Proceedings, Part IV. Vol. 13093. Lecture Notes in
Computer Science. Springer, Cham, 2021, pp. 249–278. isbn: 978-3-030-92067-8; 978-3-030-
92068-5. doi: 10.1007/978-3-030-92068-5_9.

[129] Thomas Decru. “Radical Vélu Isogeny Formulae”. In: Advances in Cryptology – CRYPTO
2024. Ed. by Leonid Reyzin and Douglas Stebila. Springer Nature Switzerland, 2024,
pp. 107–128. isbn: 978-3-031-68388-6.

[130] Thomas Decru and Sabrina Kunzweiler. “Efficient Computation of (3n, 3n)-Isogenies”. In:
AFRICACRYPT 23. Ed. by Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne.
Vol. 14064. LNCS. Springer, Cham, July 2023, pp. 53–78. doi: 10.1007/978- 3- 031-
37679-5_3.

[131] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. “Faster SeaSign Signatures
Through Improved Rejection Sampling”. In: Post-Quantum Cryptography - 10th Interna-
tional Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer Steinwandt. Springer,
Cham, 2019, pp. 271–285. doi: 10.1007/978-3-030-25510-7_15.

[132] Christina Delfs and Steven D. Galbraith. “Computing isogenies between supersingular ellip-
tic curves over Fp”. In: DCC 78.2 (2016), pp. 425–440. doi: 10.1007/s10623-014-0010-1.

[133] Max Deuring. “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”. In:
Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität 14 (1941),
pp. 197–272. issn: 0025-5858. doi: 10.1007/BF02940746.

[134] Karl Dickman. “On the frequency of numbers containing prime factors of a certain relative
magnitude”. In: Arkiv for matematik, astronomi och fysik 22.10 (1930), A–10.

[135] Denis Diemert. “On the Tight Security of the Transport Layer Security (TLS) Protocol
Version 1.3”. PhD thesis. University of Wuppertal, Germany, 2023.

271

https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-37679-5_3
https://doi.org/10.1007/978-3-031-37679-5_3
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/BF02940746

[136] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE Trans-
actions on Information Theory IT-22.6 (1976), pp. 644–654. issn: 0018-9448,1557-9654. doi:
10.1109/tit.1976.1055638.

[137] Martin Djukanović. Families of (3, 3)-split Jacobians. 2019. arXiv: 1811.10075 [math.AG].
url: https://arxiv.org/abs/1811.10075.

[138] Martin Djukanović. “Split Jacobians and lower bounds on heights”. PhD thesis. Université
de Bordeaux; Universiteit Leiden (Leyde, Pays-Bas), 2017.

[139] Igor V. Dolgachev and David Lehavi. “On isogenous principally polarized abelian surfaces”.
In: Curves and abelian varieties. Vol. 465. Contemporary Mathematics. Amer. Math. Soc.,
Providence, RI, 2008, pp. 51–69. isbn: 978-0-8218-4334-5. doi: 10.1090/conm/465/09100.

[140] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2018.1
(2018), pp. 238–268. doi: 10.13154/TCHES.V2018.I1.238-268.

[141] Alina Dudeanu, Dimitar Jetchev, Damien Robert, and Marius Vuille. “Cyclic Isogenies for
Abelian Varieties with Real Multiplication”. In: Moscow Mathematical Journal 22.4 (2022),
pp. 613–655.

[142] Max Duparc and Tako Boris Fouotsa. “SQIPrime: A Dimension 2 Variant of SQISignHD
with Non-smooth Challenge Isogenies”. In: Advances in Cryptology – ASIACRYPT 2024.
Ed. by Kai-Min Chung and Yu Sasaki. Singapore: Springer Nature Singapore, 2025, pp. 396–
429. doi: 10.1007/978-981-96-0891-1_13.

[143] Max Duparc, Tako Boris Fouotsa, and Serge Vaudenay. SILBE: an Updatable Public Key
Encryption Scheme from Lollipop Attacks. Cryptology ePrint Archive, Paper 2024/400.
2024. url: https://eprint.iacr.org/2024/400.

[144] Sylvain Duquesne and Gerhard Frey. “Background on pairings”. In: Handbook of elliptic and
hyperelliptic curve cryptography. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 115–124. isbn: 978-1-58488-518-4; 1-
58488-518-1.

[145] Edward Eaton, David Jao, Chelsea Komlo, and Youcef Mokrani. “Towards Post-Quantum
Key-Updatable Public-Key Encryption via Supersingular Isogenies”. In: SAC 2021. Ed. by
Riham AlTawy and Andreas Hülsing. Vol. 13203. LNCS. Springer, Cham, 2022, pp. 461–
482. doi: 10.1007/978-3-030-99277-4_22.

[146] Bas Edixhoven, Gerard Van der Geer, and Ben Moonen. Abelian varieties. Book Project.
2012. url: http://van-der-geer.nl/gerard/AV.pdf.

[147] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and Christophe
Petit. “Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solu-
tions”. In: EUROCRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Vol. 10822. LNCS. Springer, Cham, 2018, pp. 329–368. doi: 10.1007/978-3-319-78372-
7_11.

272

https://doi.org/10.1109/tit.1976.1055638
https://arxiv.org/abs/1811.10075
https://arxiv.org/abs/1811.10075
https://doi.org/10.1090/conm/465/09100
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.1007/978-981-96-0891-1_13
https://eprint.iacr.org/2024/400
https://doi.org/10.1007/978-3-030-99277-4_22
http://van-der-geer.nl/gerard/AV.pdf
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11

[148] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park.
“Computing endomorphism rings of supersingular elliptic curves and connections to path-
finding in isogeny graphs”. In: ANTS XIV—Proceedings of the Fourteenth Algorithmic Num-
ber Theory Symposium. Vol. 4. The Open Book Series. Math. Sci. Publ., Berkeley, CA, 2020,
pp. 215–232. isbn: 978-1-935107-08-8; 978-1-935107-07-1. doi: 10.2140/obs.2020.4.215.

[149] Noam D. Elkies. “Elliptic and modular curves over finite fields and related computational
issues”. In: Computational perspectives on number theory. Vol. 7. AMS/IP Stud. Adv. Math.
Amer. Math. Soc., Providence, RI, 1998, pp. 21–76. isbn: 0-8218-0880-X. doi: 10.1090/
amsip/007/03.

[150] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni. “Deuring for
the people: supersingular elliptic curves with prescribed endomorphism ring in general char-
acteristic”. In: LuCaNT: LMFDB, computation, and number theory. Vol. 796. Contemporary
Mathematics. Amer. Math. Soc., Providence, RI, 2024, pp. 339–373. isbn: 978-1-4704-7260-
3. doi: 10.1090/conm/796/16008.

[151] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. LNCS.
Springer, Berlin, Heidelberg, Aug. 1987, pp. 186–194. doi: 10.1007/3-540-47721-7_12.

[152] Tom Fisher. On families of 13-congruent elliptic curves. 2019. arXiv: 1912 . 10777

[math.NT]. url: https://arxiv.org/abs/1912.10777.

[153] Tom Fisher. On pairs of 17-congruent elliptic curves. 2021. arXiv: 2106.02033 [math.NT].
url: https://arxiv.org/abs/2106.02033.

[154] Enric Florit and Benjamin Smith. “An atlas of the Richelot isogeny graph”. In: Theory and
Applications of Supersingular Curves and Supersingular Abelian Varieties. Vol. B90. RIMS
Kôkyûroku Bessatsu. Res. Inst. Math. Sci. (RIMS), Kyoto, 2022, pp. 195–219.

[155] Enric Florit and Benjamin Smith. “Automorphisms and isogeny graphs of abelian varieties,
with applications to the superspecial Richelot isogeny graph”. In: Arithmetic, geometry,
cryptography, and coding theory 2021. Vol. 779. Contemporatry Mathematics. Amer. Math.
Soc., Providence, RI, 2022, pp. 103–132. isbn: 978-1-4704-6794-4. doi: 10.1090/conm/779/
15672.

[156] E. Victor Flynn. “Curves of genus 2”. PhD thesis. University of Cambridge, 1989.

[157] E. Victor Flynn. “Descent via (5, 5)-isogeny on Jacobians of genus 2 curves”. In: Journal of
Number Theory 153 (2015), pp. 270–282. issn: 0022-314X,1096-1658. doi: 10.1016/j.jnt.
2015.01.018.

[158] E. Victor Flynn. “The Jacobian and formal group of a curve of genus 2 over an arbitrary
ground field”. In: Mathematical Proceedings of the Cambridge Philosophical Society 107.3
(1990), pp. 425–441. issn: 0305-0041,1469-8064. doi: 10.1017/S0305004100068729.

[159] E. Victor Flynn and Yan Bo Ti. “Genus Two Isogeny Cryptography”. In: Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and
Rainer Steinwandt. Springer, Cham, 2019, pp. 286–306. doi: 10.1007/978-3-030-25510-
7_16.

273

https://doi.org/10.2140/obs.2020.4.215
https://doi.org/10.1090/amsip/007/03
https://doi.org/10.1090/amsip/007/03
https://doi.org/10.1090/conm/796/16008
https://doi.org/10.1007/3-540-47721-7_12
https://arxiv.org/abs/1912.10777
https://arxiv.org/abs/1912.10777
https://arxiv.org/abs/1912.10777
https://arxiv.org/abs/2106.02033
https://arxiv.org/abs/2106.02033
https://doi.org/10.1090/conm/779/15672
https://doi.org/10.1090/conm/779/15672
https://doi.org/10.1016/j.jnt.2015.01.018
https://doi.org/10.1016/j.jnt.2015.01.018
https://doi.org/10.1017/S0305004100068729
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-030-25510-7_16

[160] Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. “M-SIDH and MD-SIDH: Coun-
tering SIDH Attacks by Masking Information”. In: EUROCRYPT 2023, Part V. Ed. by
Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. Springer, Cham, Apr. 2023, pp. 282–
309. doi: 10.1007/978-3-031-30589-4_10.

[161] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, Zhenfei Zhang,
et al. “Falcon: Fast-Fourier lattice-based compact signatures over NTRU”. In: Submission
to the NIST’s post-quantum cryptography standardization process 36.5 (2018), pp. 1–75.

[162] Sam Frengley. “On 12-congruences of elliptic curves”. In: International Journal of Num-
ber Theory 20.2 (2024), pp. 565–601. issn: 1793-0421,1793-7310. doi: 10 . 1142 /

S1793042124500301.

[163] Gerhard Frey and Ernst Kani. “Curves of genus 2 covering elliptic curves and an arithmetical
application”. In: Arithmetic algebraic geometry. Vol. 89. Progr. Math. Birkhäuser Boston,
Boston, MA, 1991, pp. 153–176. isbn: 0-8176-3513-0. doi: 10.1007/978-1-4612-0457-2_7.

[164] Gerhard Frey and Tanja Lange. “Background on curves and Jacobians”. In: Handbook of
elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 45–85. isbn: 978-1-
58488-518-4; 1-58488-518-1.

[165] Gerhard Frey, Michael Müller, and Hans-Georg Rück. “The Tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems”. In: IEEE Transactions on Information
Theory 45.5 (1999), pp. 1717–1719. issn: 0018-9448,1557-9654. doi: 10.1109/18.771254.

[166] Gerhard Frey and Hans-Georg Rück. “A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves”. In: Mathematics of Computation 62.206
(1994), pp. 865–874. issn: 0025-5718,1088-6842. doi: 10.2307/2153546.

[167] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and Symmet-
ric Encryption Schemes”. In: CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. LNCS.
Springer, Berlin, Heidelberg, Aug. 1999, pp. 537–554. doi: 10.1007/3-540-48405-1_34.

[168] William Fulton. Algebraic curves. Advanced Book Classics. An introduction to algebraic
geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original.
Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989,
pp. xxii+226. isbn: 0-201-51010-3.

[169] Jenny Fuselier, Annamaria Iezzi, Mark Kozek, Travis Morrison, and Changningphaabi
Namoijam. Computing supersingular endomorphism rings using inseparable endomorphisms.
2023. arXiv: 2306.03051 [math.NT]. url: https://arxiv.org/abs/2306.03051.

[170] Steven Galbraith. Mathematics of public key cryptography. Cambridge University Press,
Cambridge, 2012, pp. xiv+615. isbn: 978-1-107-01392-6. doi: 10.1017/CBO9781139012843.

[171] Steven Galbraith. “Pairings”. In: Advances in elliptic curve cryptography. Vol. 317. Lon-
don Mathematical Society Lecture Note Series. Cambridge Univ. Press, Cambridge, 2005,
pp. 183–213. isbn: 0-521-60415-X. doi: 10.1017/CBO9780511546570.011.

274

https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1142/S1793042124500301
https://doi.org/10.1142/S1793042124500301
https://doi.org/10.1007/978-1-4612-0457-2_7
https://doi.org/10.1109/18.771254
https://doi.org/10.2307/2153546
https://doi.org/10.1007/3-540-48405-1_34
https://arxiv.org/abs/2306.03051
https://arxiv.org/abs/2306.03051
https://doi.org/10.1017/CBO9781139012843
https://doi.org/10.1017/CBO9780511546570.011

[172] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. “Hyperelliptic Pairings (In-
vited Talk)”. In: PAIRING 2007. Ed. by Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto,
and Takeshi Okamoto. Vol. 4575. LNCS. Springer, Berlin, Heidelberg, July 2007, pp. 108–
131. doi: 10.1007/978-3-540-73489-5_7.

[173] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. “On the Security of
Supersingular Isogeny Cryptosystems”. In: ASIACRYPT 2016, Part I. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Berlin, Heidelberg, Dec. 2016,
pp. 63–91. doi: 10.1007/978-3-662-53887-6_3.

[174] Steven D. Galbraith, Christophe Petit, and Javier Silva. “Identification Protocols and Sig-
nature Schemes Based on Supersingular Isogeny Problems”. In: ASIACRYPT 2017, Part I.
Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624. LNCS. Springer, Cham, Dec. 2017,
pp. 3–33. doi: 10.1007/978-3-319-70694-8_1.

[175] Pierrick Gaudry. “Fast genus 2 arithmetic based on theta functions”. In: Journal of Mathe-
matical Cryptology 1.3 (2007), pp. 243–265. issn: 1862-2976,1862-2984. doi: 10.1515/JMC.
2007.012.

[176] Pierrick Gaudry and Éric Schost. “On the invariants of the quotients of the Jacobian of
a curve of genus 2”. In: Applied algebra, algebraic algorithms and error-correcting codes.
Vol. 2227. Lecture Notes in Computer Science. Springer, Berlin, 2001, pp. 373–386.

[177] Josep González, Jordi Guàrdia, and Victor Rotger. “Abelian surfaces of GL2-type as Jaco-
bians of curves”. In: Acta Arithmetica 116.3 (2005), pp. 263–287. issn: 0065-1036,1730-6264.
doi: 10.4064/aa116-3-3.

[178] David Grant. “Formal groups in genus two”. In: Journal für die Reine und Angewandte
Mathematik 411 (1990), pp. 96–121. issn: 0075-4102,1435-5345. doi: 10.1515/crll.1990.
411.96.

[179] David Gruenewald. “Computing Humbert surfaces and applications”. In: Arithmetic, geom-
etry, cryptography and coding theory 2009. Vol. 521. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 2010, pp. 59–69.

[180] Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive,
Paper 2012/309. 2012. url: https://eprint.iacr.org/2012/309.

[181] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the Fujisaki-
Okamoto Transformation”. In: TCC 2017, Part I. Ed. by Yael Kalai and Leonid Reyzin.
Vol. 10677. LNCS. Springer, Cham, Nov. 2017, pp. 341–371. doi: 10.1007/978-3-319-
70500-2_12.

[182] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge Uni-
versity Press, Cambridge, 1991, pp. viii+607. isbn: 0-521-30587-X. doi: 10 . 1017 /

CBO9780511840371.

[183] Everett W. Howe. “Principally polarized ordinary abelian varieties over finite fields”. In:
Transactions of the American Mathematical Society 347.7 (1995), pp. 2361–2401. issn: 0002-
9947,1088-6850. doi: 10.2307/2154828.

275

https://doi.org/10.1007/978-3-540-73489-5_7
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1515/JMC.2007.012
https://doi.org/10.1515/JMC.2007.012
https://doi.org/10.4064/aa116-3-3
https://doi.org/10.1515/crll.1990.411.96
https://doi.org/10.1515/crll.1990.411.96
https://eprint.iacr.org/2012/309
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.2307/2154828

[184] Dale Husemöller. Elliptic curves. Second. Vol. 111. Graduate Texts in Mathematics. With
appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. Springer-Verlag, New York,
2004, pp. xxii+487. isbn: 0-387-95490-2.

[185] Aaron Hutchinson and Koray Karabina. “Constructing multidimensional differential addi-
tion chains and their applications”. In: Journal of Cryptographic Engineering 9.1 (2019),
pp. 1–19. doi: 10.1007/S13389-017-0177-2.

[186] Tomoyoshi Ibukiyama and Toshiyuki Katsura. “On the field of definition of superspecial
polarized abelian varieties and type numbers”. In: Compositio Mathematica 91.1 (1994),
pp. 37–46. issn: 0010-437X,1570-5846.

[187] Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort. “Supersingular curves of genus
two and class numbers”. In: Compositio Mathematica 57.2 (1986), pp. 127–152. issn: 0010-
437X,1570-5846.

[188] Jun-ichi Igusa. “Arithmetic variety of moduli for genus two”. In: Annals of Mathematics.
Second Series 72 (1960), pp. 612–649. issn: 0003-486X. doi: 10.2307/1970233.

[189] Jun-ichi Igusa. “Class number of a definite quaternion with prime discriminant”. In: Pro-
ceedings of the National Academy of Sciences of the United States of America 44 (1958),
pp. 312–314. issn: 0027-8424. doi: 10.1073/pnas.44.4.312.

[190] Jun-ichi Igusa. “On Siegel modular forms of genus two”. In: American Journal of Mathe-
matics 84 (1962), pp. 175–200. issn: 0002-9327,1080-6377. doi: 10.2307/2372812.

[191] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. “Do All Elliptic Curves of
the Same Order Have the Same Difficulty of Discrete Log?” In: ASIACRYPT 2005. Ed. by
Bimal K. Roy. Vol. 3788. LNCS. Springer, Berlin, Heidelberg, Dec. 2005, pp. 21–40. doi:
10.1007/11593447_2.

[192] Samuel Jaques and John M. Schanck. “Quantum Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Pro-
ceedings, Part I. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11692. Lecture
Notes in Computer Science. Springer, 2019, pp. 32–61. doi: 10.1007/978-3-030-26948-
7_2.

[193] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic Curve Digital Signature
Algorithm (ECDSA)”. In: International Journal of Information Security 1.1 (2001), pp. 36–
63. doi: 10.1007/s102070100002.

[194] Bruce W. Jordan and Yevgeny Zaytman. Isogeny graphs of superspecial abelian varieties
and Brandt matrices. 2023. arXiv: 2005.09031.

[195] Simon Josefsson and Ilari Liusvaara. “Edwards-Curve Digital Signature Algorithm (Ed-
DSA)”. In: RFC 8032 (2017), pp. 1–60. doi: 10.17487/RFC8032.

[196] Antoine Joux. “A one round protocol for tripartite Diffie-Hellman”. In: Algorithmic number
theory (Leiden, 2000). Vol. 1838. Lecture Notes in Computer Science. Springer, Berlin, 2000,
pp. 385–393. isbn: 3-540-67695-3. doi: 10.1007/10722028_23.

276

https://doi.org/10.1007/S13389-017-0177-2
https://doi.org/10.2307/1970233
https://doi.org/10.1073/pnas.44.4.312
https://doi.org/10.2307/2372812
https://doi.org/10.1007/11593447_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/s102070100002
https://arxiv.org/abs/2005.09031
https://doi.org/10.17487/RFC8032
https://doi.org/10.1007/10722028_23

[197] Ernst Kani and Wolfgang Schanz. “Modular diagonal quotient surfaces”. In: Mathema-
tische Zeitschrift 227.2 (1998), pp. 337–366. issn: 0025-5874,1432-1823. doi: 10.1007/

PL00004379.

[198] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments
to Polynomials and Their Applications”. In: ASIACRYPT 2010. Ed. by Masayuki Abe.
Vol. 6477. LNCS. Springer, Berlin, Heidelberg, Dec. 2010, pp. 177–194. doi: 10.1007/978-
3-642-17373-8_11.

[199] Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, and Ling Qin. “CSI-Otter: Isogeny-Based
(Partially) Blind Signatures from the Class Group Action with a Twist”. In: CRYPTO 2023,
Part III. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14083. LNCS. Springer,
Cham, Aug. 2023, pp. 729–761. doi: 10.1007/978-3-031-38548-3_24.

[200] Jonathan Katz. Digital signatures. Springer, New York, 2010, pp. xiv+192. isbn: 978-0-387-
27711-0. doi: 10.1007/978-0-387-27712-7.

[201] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Third. Chapman
& Hall/CRC Cryptography and Network Security. CRC Press, Boca Raton, FL, 2021,
pp. xx+626. isbn: 978-0-8153-5436-9; 978-1-351-13303-6.

[202] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of Computation 48.177 (1987),
pp. 203–209. issn: 0025-5718,1088-6842. doi: 10.2307/2007884.

[203] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. “On the quaternion
ℓ-isogeny path problem”. In: LMS Journal of Computation and Mathematics 17 (2014),
pp. 418–432. issn: 1461-1570. doi: 10.1112/S1461157014000151.

[204] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. Thesis (Ph.D.)–
University of California, Berkeley. ProQuest LLC, Ann Arbor, MI, 1996, p. 117. isbn:
978-0591-32123-4.

[205] Robert M. Kuhn. “Curves of genus 2 with split Jacobian”. In: Transactions of the American
Mathematical Society 307.1 (1988), pp. 41–49. issn: 0002-9947,1088-6850. doi: 10.2307/
2000749.

[206] Abhinav Kumar. “Hilbert modular surfaces for square discriminants and elliptic subfields
of genus 2 function fields”. In: Research in the Mathematical Sciences 2 (2015), Art. 24, 46.
issn: 2522-0144,2197-9847. doi: 10.1186/s40687-015-0042-9.

[207] Sabrina Kunzweiler. “Efficient computation of (2n, 2n)-isogenies”. In: DCC 92.6 (2024),
pp. 1761–1802. doi: 10.1007/s10623-024-01366-1.

[208] Sabrina Kunzweiler, Luciano Maino, Tomoki Moriya, Christophe Petit, Giacomo Pope,
Damien Robert, Miha Stopar, and Yan Bo Ti. Radical 2-isogenies and cryptographic hash
functions in dimensions 1, 2 and 3. Cryptology ePrint Archive, Paper 2024/1732. 2024.
url: https://eprint.iacr.org/2024/1732.

[209] Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkämper. “Secret Keys in Genus-2 SIDH”.
In: SAC 2021. Ed. by Riham AlTawy and Andreas Hülsing. Vol. 13203. LNCS. Springer,
Cham, 2022, pp. 483–507. doi: 10.1007/978-3-030-99277-4_23.

277

https://doi.org/10.1007/PL00004379
https://doi.org/10.1007/PL00004379
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.2307/2007884
https://doi.org/10.1112/S1461157014000151
https://doi.org/10.2307/2000749
https://doi.org/10.2307/2000749
https://doi.org/10.1186/s40687-015-0042-9
https://doi.org/10.1007/s10623-024-01366-1
https://eprint.iacr.org/2024/1732
https://doi.org/10.1007/978-3-030-99277-4_23

[210] Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkämper. Secret Keys in Genus-2 SIDH.
Cryptology ePrint Archive, Paper 2021/990. 2021. url: https://eprint.iacr.org/2021/
990.

[211] Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkämper. “One-Way
Functions and Malleability Oracles: Hidden Shift Attacks on Isogeny-Based Protocols”.
In: EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12696. LNCS. Springer, Cham, Oct. 2021, pp. 242–271. doi: 10.1007/978-3-030-
77870-5_9.

[212] Serge Lang. Abelian varieties. Vol. No. 7. Interscience Tracts in Pure and Applied Mathe-
matics. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959,
pp. xii+256.

[213] Tanja Lange. “Efficient Arithmetic on Hyperelliptic Curves”. Universität-Gesamthochschule
Essen, 2001. url: https://eprint.iacr.org/2002/107.pdf.

[214] Derrick H. Lehmer. “On a problem of Störmer”. In: Illinois Journal of Mathematics 8 (1964),
pp. 57–79. issn: 0019-2082. url: http://projecteuclid.org/euclid.ijm/1256067456.

[215] Hendrik W. Lenstra. “Factoring integers with elliptic curves”. In: Annals of Mathemat-
ics. Second Series 126.3 (1987), pp. 649–673. issn: 0003-486X,1939-8980. doi: 10.2307/
1971363.

[216] Christopher Leonardi. “Security Analysis of Isogeny-Based Cryptosystems”. PhD thesis.
University of Waterloo, Ontario, Canada, 2020. url: https://hdl.handle.net/10012/
16149.

[217] Antonin Leroux. “Quaternion Algebra and isogeny-based cryptography. (Algèbres de quater-
nions et cryptographie à base d’isogénies)”. PhD thesis. Polytechnic Institute of Paris,
France, 2022. url: https://tel.archives-ouvertes.fr/tel-03886810.

[218] Antonin Leroux. Verifiable random function from the Deuring correspondence and higher
dimensional isogenies. Cryptology ePrint Archive, Paper 2023/1251. 2023. url: https:

//eprint.iacr.org/2023/1251.

[219] Stephen Lichtenbaum. “Duality theorems for curves over p-adic fields”. In: Inventiones Math-
ematicae 7 (1969), pp. 120–136. issn: 0020-9910,1432-1297. doi: 10.1007/BF01389795.

[220] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, Cambridge, 1994, pp. xii+416. isbn: 0-521-46094-8. doi: 10.
1017/CBO9781139172769.

[221] Kaizhan Lin, Weize Wang, Zheng Xu, and Chang-An Zhao. “A Faster Software Implemen-
tation of SQIsign”. In: IEEE Transactions on Information Theory 70.9 (2024), pp. 1–1. doi:
10.1109/TIT.2024.3423675.

[222] Jonathan Love and Dan Boneh. Supersingular Curves With Small Non-integer Endomor-
phisms. 2020. arXiv: 1910.03180 [math.NT]. url: https://arxiv.org/abs/1910.03180.

[223] David Lubicz and Damien Robert. “Arithmetic on abelian and Kummer varieties”. In: Finite
Fields and their Applications 39 (2016), pp. 130–158. issn: 1071-5797,1090-2465. doi: 10.
1016/j.ffa.2016.01.009.

278

https://eprint.iacr.org/2021/990
https://eprint.iacr.org/2021/990
https://doi.org/10.1007/978-3-030-77870-5_9
https://doi.org/10.1007/978-3-030-77870-5_9
https://eprint.iacr.org/2002/107.pdf
http://projecteuclid.org/euclid.ijm/1256067456
https://doi.org/10.2307/1971363
https://doi.org/10.2307/1971363
https://hdl.handle.net/10012/16149
https://hdl.handle.net/10012/16149
https://tel.archives-ouvertes.fr/tel-03886810
https://eprint.iacr.org/2023/1251
https://eprint.iacr.org/2023/1251
https://doi.org/10.1007/BF01389795
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1109/TIT.2024.3423675
https://arxiv.org/abs/1910.03180
https://arxiv.org/abs/1910.03180
https://doi.org/10.1016/j.ffa.2016.01.009
https://doi.org/10.1016/j.ffa.2016.01.009

[224] David Lubicz and Damien Robert. “Fast change of level and applications to isogenies”. In:
Research in Number Theory 9.1 (2023), Paper No. 7, 28. issn: 2522-0160,2363-9555. doi:
10.1007/s40993-022-00407-9.

[225] Florian Luca and Filip Najman. “On the largest prime factor of x2− 1”. In: Mathematics of
Computation 80.273 (2011), pp. 429–435. issn: 0025-5718,1088-6842. doi: 10.1090/S0025-
5718-2010-02381-6.

[226] Kay Magaard, Tanush Shaska, and Helmut Völklein. “Genus 2 curves that admit a degree
5 map to an elliptic curve”. In: Forum Mathematicum 21.3 (2009), pp. 547–566. issn: 0933-
7741,1435-5337. doi: 10.1515/FORUM.2009.027.

[227] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. “A Direct Key Recovery Attack on SIDH”. In: EUROCRYPT 2023, Part V.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. Springer, Cham, Apr. 2023,
pp. 448–471. doi: 10.1007/978-3-031-30589-4_16.

[228] Chloe Martindale and Lorenz Panny. How to not break SIDH. Cryptology ePrint Archive,
Report 2019/558. 2019. url: https://eprint.iacr.org/2019/558.

[229] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. “Reducing elliptic curve
logarithms to logarithms in a finite field”. In: IEEE Transactions on Information Theory
39.5 (1993), pp. 1639–1646. issn: 0018-9448,1557-9654. doi: 10.1109/18.259647.

[230] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied
cryptography. CRC Press Series on Discrete Mathematics and its Applications. With a
foreword by Ronald L. Rivest. CRC Press, Boca Raton, FL, 1997, pp. xxviii+780. isbn:
0-8493-8523-7.

[231] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied
cryptography. CRC Press Series on Discrete Mathematics and its Applications. With a
foreword by Ronald L. Rivest. CRC Press, Boca Raton, FL, 1997, pp. xxviii+780. isbn:
0-8493-8523-7.

[232] Jean-François Mestre. “La méthode des graphes. Exemples et applications”. In: Proceedings
of the international conference on class numbers and fundamental units of algebraic number
fields (Katata, 1986). Nagoya Univ., Nagoya, 1986, pp. 217–242.

[233] Jean-François Mestre. “Construction de courbes de genre 2 à partir de leurs modules”. In:
Effective methods in algebraic geometry. Vol. 94. Progr. Math. Birkhäuser Boston, Boston,
MA, 1991, pp. 313–334. isbn: 0-8176-3546-7.

[234] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: INDOCRYPT 2018.
Ed. by Debrup Chakraborty and Tetsu Iwata. Vol. 11356. LNCS. Springer, Cham, Dec.
2018, pp. 137–152. doi: 10.1007/978-3-030-05378-9_8.

[235] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation”. In: Journal of Cryptology
17.4 (Sept. 2004), pp. 235–261. doi: 10.1007/s00145-004-0315-8.

279

https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1090/S0025-5718-2010-02381-6
https://doi.org/10.1090/S0025-5718-2010-02381-6
https://doi.org/10.1515/FORUM.2009.027
https://doi.org/10.1007/978-3-031-30589-4_16
https://eprint.iacr.org/2019/558
https://doi.org/10.1109/18.259647
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/s00145-004-0315-8

[236] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in Cryptology -
CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings. Ed. by
Hugh C. Williams. Vol. 218. Lecture Notes in Computer Science. Springer, 1985, pp. 417–
426. doi: 10.1007/3-540-39799-X_31.

[237] James S. Milne. “Abelian varieties”. In: Arithmetic geometry. Springer, New York, 1986,
pp. 103–150. isbn: 0-387-96311-1.

[238] James S. Milne. Fields and Galois theory. Kea Books, Ann Arbor, MI, 2022, pp. viii+189.
isbn: 979-8-218-07399-2.

[239] James S. Milne. “Jacobian varieties”. In: Arithmetic geometry. Springer, New York, 1986,
pp. 167–212. isbn: 0-387-96311-1.

[240] Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random Oracles -
An Approach to Modern Cryptography. Information Security and Cryptography. Springer,
2021. isbn: 978-3-030-63286-1. doi: 10.1007/978-3-030-63287-8.

[241] Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods of factorization”.
In: Mathematics of Computation 48.177 (1987), pp. 243–264. issn: 0025-5718,1088-6842.
doi: 10.2307/2007888.

[242] Dustin Moody and Daniel Shumow. “Analogues of Vélu’s formulas for isogenies on alternate
models of elliptic curves”. In: Mathematics of Computation 85.300 (2016), pp. 1929–1951.
issn: 0025-5718,1088-6842. doi: 10.1090/mcom/3036.

[243] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. “How to Construct CSIDH on Edwards
Curves”. In: CT-RSA 2020. Ed. by Stanislaw Jarecki. Vol. 12006. LNCS. Springer, Cham,
Feb. 2020, pp. 512–537. doi: 10.1007/978-3-030-40186-3_22.

[244] David Mumford. Abelian varieties. Vol. 5. Tata Institute of Fundamental Research Studies
in Mathematics. Tata Institute of Fundamental Research, Bombay; by Oxford University
Press, London, 1970, pp. viii+242.

[245] David Mumford. Tata lectures on theta. II. Modern Birkhäuser Classics. Jacobian theta
functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Pre-
viato, M. Stillman and H. Umemura, Reprint of the 1984 original. Birkhäuser Boston, Inc.,
Boston, MA, 2007, pp. xiv+272. isbn: 978-0-8176-4569-4; 0-8176-4569-1. doi: 10.1007/
978-0-8176-4578-6.

[246] Kohei Nakagawa and Hiroshi Onuki. “QFESTA: Efficient Algorithms and Parameters for
FESTA Using Quaternion Algebras”. In: Advances in Cryptology – CRYPTO 2024. Ed. by
Leonid Reyzin and Douglas Stebila. Springer Nature Switzerland, 2024, pp. 75–106. isbn:
978-3-031-68388-6.

[247] Kohei Nakagawa, Hiroshi Onuki, Wouter Castryck, Mingjie Chen, Riccardo Invernizzi,
Gioella Lorenzon, and Frederik Vercauteren. “SQIsign2D-East: A New Signature Scheme
Using 2-Dimensional Isogenies”. In: Advances in Cryptology – ASIACRYPT 2024. Ed. by
Kai-Min Chung and Yu Sasaki. Singapore: Springer Nature Singapore, 2025, pp. 272–303.
doi: 10.1007/978-981-96-0891-1_9.

280

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.2307/2007888
https://doi.org/10.1090/mcom/3036
https://doi.org/10.1007/978-3-030-40186-3_22
https://doi.org/10.1007/978-0-8176-4578-6
https://doi.org/10.1007/978-0-8176-4578-6
https://doi.org/10.1007/978-981-96-0891-1_9

[248] Chris Nicholls. “Descent methods and torsion on Jacobians of higher genus curves”. PhD
thesis. University of Oxford, 2018.

[249] Ryo Ohashi. “On the Rosenhain forms of superspecial curves of genus two”. In: Finite Fields
Appl. 97 (2024), Paper No. 102445, 25. issn: 1071-5797,1090-2465. doi: 10.1016/j.ffa.
2024.102445.

[250] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai. “Elliptic Curves with the
Montgomery-Form and Their Cryptographic Applications”. In: PKC 2000. Ed. by Hideki
Imai and Yuliang Zheng. Vol. 1751. LNCS. Springer, Berlin, Heidelberg, Jan. 2000, pp. 238–
257. doi: 10.1007/978-3-540-46588-1_17.

[251] Hiroshi Onuki and Tomoki Moriya. “Radical Isogenies on Montgomery Curves”. In:
PKC 2022, Part I. Ed. by Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe. Vol. 13177.
LNCS. Springer, Cham, Mar. 2022, pp. 473–497. doi: 10.1007/978-3-030-97121-2_17.

[252] Hiroshi Onuki and Kohei Nakagawa. “Ideal-to-Isogeny Algorithm Using 2-Dimensional Iso-
genies and Its Application to SQIsign”. In: Advances in Cryptology – ASIACRYPT 2024.
Ed. by Kai-Min Chung and Yu Sasaki. Singapore: Springer Nature Singapore, 2025, pp. 243–
271. doi: 10.1007/978-981-96-0891-1_8.

[253] Paul C. van Oorschot and Michael J. Wiener. “Parallel collision search with cryptanalytic
applications”. In: Journal of Cryptology 12.1 (1999), pp. 1–28. issn: 0933-2790,1432-1378.
doi: 10.1007/PL00003816.

[254] Frans Oort. “A stratification of a moduli space of abelian varieties”. In: Moduli of abelian
varieties. Vol. 195. Progr. Math. Birkhäuser, Basel, 2001, pp. 345–416. isbn: 3-7643-6517-X.
doi: 10.1007/978-3-0348-8303-0_13.

[255] Frans Oort. “Subvarieties of moduli spaces”. In: Inventiones Mathematicae 24 (1974), pp. 95–
119. issn: 0020-9910,1432-1297. doi: 10.1007/BF01404301.

[256] Frans Oort and Kenji Ueno. “Principally polarized abelian varieties of dimension two or
three are Jacobian varieties”. In: Journal of the Faculty of Science. University of Tokyo. IA
Math. 20 (1973), pp. 377–381. issn: 0040-8980.

[257] Aurel Page and Benjamin Wesolowski. “The Supersingular Endomorphism Ring and One
Endomorphism Problems are Equivalent”. In: EUROCRYPT 2024, Part VI. Ed. by Marc
Joye and Gregor Leander. Vol. 14656. LNCS. Springer, Cham, May 2024, pp. 388–417. doi:
10.1007/978-3-031-58751-1_14.

[258] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT 2020, Part II. Ed. by
Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer, Cham, May 2020, pp. 463–
492. doi: 10.1007/978-3-030-45724-2_16.

[259] Christophe Petit. “Faster Algorithms for Isogeny Problems Using Torsion Point Images”.
In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625.
LNCS. Springer, Cham, Dec. 2017, pp. 330–353. doi: 10.1007/978-3-319-70697-9_12.

[260] Christophe Petit and Spike Smith. “An improvement to the quaternion analogue of the
l-isogeny problem”. In: Presentation at MathCrypt (2018). url: https://crypto.iacr.
org/2018/affevents/mathcrypt/page.html.

281

https://doi.org/10.1016/j.ffa.2024.102445
https://doi.org/10.1016/j.ffa.2024.102445
https://doi.org/10.1007/978-3-540-46588-1_17
https://doi.org/10.1007/978-3-030-97121-2_17
https://doi.org/10.1007/978-981-96-0891-1_8
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/978-3-0348-8303-0_13
https://doi.org/10.1007/BF01404301
https://doi.org/10.1007/978-3-031-58751-1_14
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://crypto.iacr.org/2018/affevents/mathcrypt/page.html
https://crypto.iacr.org/2018/affevents/mathcrypt/page.html

[261] Arnold K. Pizer. “Ramanujan graphs and Hecke operators”. In: American Mathematical
Society. Bulletin. New Series 23.1 (1990), pp. 127–137. issn: 0273-0979,1088-9485. doi:
10.1090/S0273-0979-1990-15918-X.

[262] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindal, Lorenz Panny,
Christophe Petit, and Katherine E. Stange. “Improved torsion-point attacks on SIDH vari-
ants”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptol-
ogy Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III.
Vol. 12827. Lecture Notes in Computer Science. Springer, Cham, 2021, pp. 432–470. isbn:
978-3-030-84251-2; 978-3-030-84252-9. doi: 10.1007/978-3-030-84252-9_15.

[263] Srinivasa Rao Subramanya Rao. “Three Dimensional Montgomery Ladder, Differential
Point Tripling on Montgomery Curves and Point Quintupling on Weierstrass’ and Ed-
wards Curves”. In: AFRICACRYPT 16. Ed. by David Pointcheval, Abderrahmane Nitaj,
and Tajjeeddine Rachidi. Vol. 9646. LNCS. Springer, Cham, Apr. 2016, pp. 84–106. doi:
10.1007/978-3-319-31517-1_5.

[264] Miles Reid. Undergraduate algebraic geometry. Vol. 12. London Mathematical Society Stu-
dent Texts. Cambridge University Press, Cambridge, 1988, pp. viii+129. isbn: 0-521-35559-
1; 0-521-35662-8. doi: 10.1017/CBO9781139163699.

[265] Krijn Reijnders. “Effective Pairings in Isogeny-Based Cryptography”. In: LATIN-
CRYPT 2023. Ed. by Abdelrahaman Aly and Mehdi Tibouchi. Vol. 14168. LNCS. Springer,
Cham, Oct. 2023, pp. 109–128. doi: 10.1007/978-3-031-44469-2_6.

[266] Joost Renes. “Computing Isogenies Between Montgomery Curves Using the Action of (0,
0)”. In: Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018. Ed.
by Tanja Lange and Rainer Steinwandt. Springer, Cham, 2018, pp. 229–247. doi: 10.1007/
978-3-319-79063-3_11.

[267] Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. “µKummer: Efficient Hy-
perelliptic Signatures and Key Exchange on Microcontrollers”. In: CHES 2016. Ed. by
Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813. LNCS. Springer, Berlin, Heidelberg,
Aug. 2016, pp. 301–320. doi: 10.1007/978-3-662-53140-2_15.

[268] Joost Renes and Benjamin Smith. “qDSA: Small and Secure Digital Signatures with Curve-
Based Diffie-Hellman Key Pairs”. In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10625. LNCS. Springer, Cham, Dec. 2017, pp. 273–302. doi:
10.1007/978-3-319-70697-9_10.

[269] Friedrich Julius Richelot. “De transformatione integralium Abelianorum primi ordinis com-
mentatio. Caput secundum. De computatione integralium Abelianorum primi ordinis”. In:
Journal für die Reine und Angewandte Mathematik 16 (1837), pp. 285–341. issn: 0075-
4102,1435-5345. doi: 10.1515/crll.1837.16.285.

[270] Ronald Rivest, Adi Shamir, and Len Adleman. “A method for obtaining digital signatures
and public-key cryptosystems (1978)”. In: Ideas that created the future—classic papers of
computer science. Reprinted from [0700103]. MIT Press, Cambridge, MA, 2021, pp. 463–
474. isbn: [9780262045308].

282

https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-319-31517-1_5
https://doi.org/10.1017/CBO9781139163699
https://doi.org/10.1007/978-3-031-44469-2_6
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-662-53140-2_15
https://doi.org/10.1007/978-3-319-70697-9_10
https://doi.org/10.1515/crll.1837.16.285

[271] Damien Robert. “Breaking SIDH in Polynomial Time”. In: EUROCRYPT 2023, Part V.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. Springer, Cham, Apr. 2023,
pp. 472–503. doi: 10.1007/978-3-031-30589-4_17.

[272] Damien Robert. “Efficient algorithms for abelian varieties and their moduli spaces”. PhD
thesis. Université de Bordeaux (UB), 2021. url: https://hal.science/tel-03498268.

[273] Damien Robert. “Theta functions and cryptographic applications”. PhD thesis. Université
Henri Poincaré - Nancy, 2010.

[274] Phillip Rogaway and Thomas Shrimpton. “Cryptographic Hash-Function Basics: Defini-
tions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance”. In: Fast Software Encryption, 11th International Workshop, FSE
2004, Delhi, India, February 5-7, 2004, Revised Papers. Ed. by Bimal K. Roy and Willi
Meier. Vol. 3017. Lecture Notes in Computer Science. Springer, 2004, pp. 371–388. doi:
10.1007/978-3-540-25937-4_24.

[275] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem based on Isogenies.
Cryptology ePrint Archive, Paper 2006/145. 2006. url: https://eprint.iacr.org/2006/
145.

[276] Cyprien Delpech de Saint Guilhem and Robi Pedersen. “New proof systems and an OPRF
from CSIDH”. In: Public-Key Cryptography - PKC 2024 - 27th IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Sydney, NSW, Australia, April
15-17, 2024, Proceedings, Part III. Vol. 14603. Lecture Notes in Computer Science. Springer,
Cham, 2024, pp. 217–251. isbn: 978-3-031-57724-6; 978-3-031-57725-3. doi: 10.1007/978-
3-031-57725-3_8.

[277] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Francisco
Rodríguez-Henríquez. “Finding Practical Parameters for Isogeny-based Cryptography”. In:
IACR Communications in Cryptology 1.3 (Oct. 7, 2024). issn: 3006-5496. doi: 10.62056/
ayojbhey6b.

[278] René Schoof. “Counting points on elliptic curves over finite fields”. In: vol. 7. 1. Les Dix-
huitièmes Journées Arithmétiques. 1995, pp. 219–254. url: http://jtnb.cedram.org/
item?id=JTNB_1995__7_1_219_0.

[279] René Schoof. “Counting points on elliptic curves over finite fields”. In: vol. 7. 1. Les Dix-
huitièmes Journées Arithmétiques. 1995, pp. 219–254. url: http://jtnb.cedram.org/
item?id=JTNB_1995__7_1_219_0.

[280] René Schoof. “Elliptic curves over finite fields and the computation of square roots mod
p”. In: Mathematics of Computation 44.170 (1985), pp. 483–494. issn: 0025-5718,1088-6842.
doi: 10.2307/2007968.

[281] Michael Scott. A note on the calculation of some functions in finite fields: Tricks of the
Trade. Cryptology ePrint Archive, Paper 2020/1497. 2020. url: https://eprint.iacr.
org/2020/1497.

283

https://doi.org/10.1007/978-3-031-30589-4_17
https://hal.science/tel-03498268
https://doi.org/10.1007/978-3-540-25937-4_24
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-031-57725-3_8
https://doi.org/10.1007/978-3-031-57725-3_8
https://doi.org/10.62056/ayojbhey6b
https://doi.org/10.62056/ayojbhey6b
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
https://doi.org/10.2307/2007968
https://eprint.iacr.org/2020/1497
https://eprint.iacr.org/2020/1497

[282] Michael Scott. Elliptic Curve Cryptography for the masses: Simple and fast finite field arith-
metic. Cryptology ePrint Archive, Paper 2024/779. 2024. url: https://eprint.iacr.org/
2024/779.

[283] Tanush Shaska. “Curves of genus 2 with (N,N) decomposable Jacobians”. In: Journal of
Symbolic Computation 31.5 (2001), pp. 603–617. issn: 0747-7171,1095-855X. doi: 10.1006/
jsco.2001.0439.

[284] Tanush Shaska. Curves of genus two covering elliptic curves. University of Florida, 2001.

[285] Tanush Shaska. “Genus 2 fields with degree 3 elliptic subfields”. In: Forum Mathematicum
16.2 (2004), pp. 263–280. issn: 0933-7741,1435-5337. doi: 10.1515/form.2004.013.

[286] Tanush Shaska and Helmut Völklein. “Elliptic subfields and automorphisms of genus 2
function fields”. In: Algebra, arithmetic and geometry with applications. Springer, Berlin,
2004, pp. 703–723. isbn: 3-540-00475-0.

[287] Tanush Shaska, G. S. Wijesiri, Steve Wolf, and Lindsey Woodland. “Degree 4 coverings of
elliptic curves by genus 2 curves”. In: Albanian Journal of Mathematics 2.4 (2008), pp. 307–
318. issn: 1930-1235.

[288] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”.
In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994).
IEEE Comput. Soc. Press, Los Alamitos, CA, 1994, pp. 124–134. isbn: 0-8186-6580-7. doi:
10.1109/SFCS.1994.365700.

[289] Victor Shoup. A computational introduction to number theory and algebra. Second. Cam-
bridge University Press, Cambridge, 2009, pp. xviii+580. isbn: 978-0-521-51644-0.

[290] Victor Shoup. “Efficient computation of minimal polynomials in algebraic extensions of
finite fields”. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation (Vancouver, BC). ACM, New York, 1999, pp. 53–58. doi: 10.1145/309831.
309859.

[291] Signal Protocol Specification. https://signal.org/docs/. Accessed: 2024-08-25.

[292] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Vol. 106. Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1986, pp. xii+400. isbn: 0-387-96203-4. doi: 10.1007/
978-1-4757-1920-8.

[293] Benjamin Smith. “Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi
method”. In: Arithmetic, geometry, cryptography and coding theory. Vol. 574. Contemporary
Mathematics. Amer. Math. Soc., Providence, RI, 2012, pp. 159–170. isbn: 978-0-8218-7572-
8. doi: 10.1090/conm/574/11418.

[294] Benjamin Smith. “Explicit endomorphisms and correspondences”. PhD thesis. 2005.

[295] Damien Stehlé and Paul Zimmermann. “A Binary Recursive Gcd Algorithm”. In: Algorith-
mic Number Theory. Ed. by Duncan Buell. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 411–425. isbn: 978-3-540-24847-7.

[296] Bruno Sterner. Towards Optimally Small Smoothness Bounds for Cryptographic-Sized Twin
Smooth Integers and their Isogeny-based Applications. Cryptology ePrint Archive, Paper
2023/1576. 2023. url: https://eprint.iacr.org/2023/1576.

284

https://eprint.iacr.org/2024/779
https://eprint.iacr.org/2024/779
https://doi.org/10.1006/jsco.2001.0439
https://doi.org/10.1006/jsco.2001.0439
https://doi.org/10.1515/form.2004.013
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/309831.309859
https://doi.org/10.1145/309831.309859
https://signal.org/docs/
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1090/conm/574/11418
https://eprint.iacr.org/2023/1576

[297] Ian Stewart. Galois theory. Fourth. CRC Press, Boca Raton, FL, 2015, pp. xxii+321. isbn:
978-1-4822-4582-0.

[298] Henning Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag,
Berlin, 1993, pp. x+260. isbn: 3-540-56489-6.

[299] Anton Stolbunov. “Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves”. In: Advances in Mathematics of Communications
4.2 (2010), pp. 215–235. issn: 1930-5346,1930-5338. doi: 10.3934/amc.2010.4.215.

[300] Carl Størmer. “Quelques théorèmes sur l’équation de Pell x2 −Dy2 = ±1 et leurs applica-
tions”. In: Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl 2 (1897), p. 48.

[301] Andrew V. Sutherland. Modular Polynomials. https : / / math . mit . edu / ~drew /

ClassicalModPolys.html. Online; accessed 30 September 2021.

[302] Andrew V. Sutherland. “On the evaluation of modular polynomials”. In: ANTS X—
Proceedings of the Tenth Algorithmic Number Theory Symposium. Vol. 1. The Open Book
Series. Math. Sci. Publ., Berkeley, CA, 2013, pp. 531–555. isbn: 978-1-935107-01-9; 978-1-
935107-00-2. doi: 10.2140/obs.2013.1.531.

[303] Katsuyuki Takashima. “Efficient algorithms for isogeny sequences and their cryptographic
applications”. In: Mathematical modelling for next-generation cryptography. Vol. 29. Mathe-
matics for Industry (Tokyo). Springer, Singapore, 2018, pp. 97–114. isbn: 978-981-10-5064-0;
978-981-10-5065-7. doi: 10.1007/978-981-10-5065-7_6.

[304] Katsuyuki Takashima and Reo Yoshida. “An algorithm for computing a sequence of Richelot
isogenies”. In: Bulletin of the Korean Mathematical Society 46.4 (2009), pp. 789–802. issn:
1015-8634,2234-3016. doi: 10.4134/BKMS.2009.46.4.789.

[305] Seiichiro Tani. “Claw finding algorithms using quantum walk”. In: Theoretical Computer
Science 410.50 (2009), pp. 5285–5297. issn: 0304-3975,1879-2294. doi: 10.1016/j.tcs.
2009.08.030.

[306] John Tate. “Endomorphisms of abelian varieties over finite fields”. In: Inventiones Mathe-
maticae 2 (1966), pp. 134–144. issn: 0020-9910,1432-1297. doi: 10.1007/BF01404549.

[307] Gérald Tenenbaum. “Integers with a large friable component”. In: Acta Arithmetica 124.3
(2006), pp. 287–291. issn: 0065-1036,1730-6264. doi: 10.4064/aa124-3-6.

[308] Gérald Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres. Second.
Vol. 1. Cours Spécialisés. Société Mathématique de France, Paris, 1995, pp. xv+457. isbn:
2-85629-032-9.

[309] The National Institute of Standards and Technology (NIST). Call for Additional Digital
Signature Schemes for the Post-Quantum Cryptography Standardization Process. October,
2022.

[310] The National Institute of Standards and Technology (NIST). Submission Requirements and
Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. Dec. 2016.

[311] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2).
https://www.sagemath.org. 2021.

285

https://doi.org/10.3934/amc.2010.4.215
https://math.mit.edu/~drew/ClassicalModPolys.html
https://math.mit.edu/~drew/ClassicalModPolys.html
https://doi.org/10.2140/obs.2013.1.531
https://doi.org/10.1007/978-981-10-5065-7_6
https://doi.org/10.4134/BKMS.2009.46.4.789
https://doi.org/10.1016/j.tcs.2009.08.030
https://doi.org/10.1016/j.tcs.2009.08.030
https://doi.org/10.1007/BF01404549
https://doi.org/10.4064/aa124-3-6
https://www.sagemath.org

[312] Kiminori Tsukazaki. “Explicit isogenies of elliptic curves”. PhD thesis. University of War-
wick, 2013.

[313] Dominique Unruh. “Non-Interactive Zero-Knowledge Proofs in the Quantum Random Or-
acle Model”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9057. LNCS. Springer, Berlin, Heidelberg, Apr. 2015, pp. 755–784. doi: 10.1007/978-
3-662-46803-6_25.

[314] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus Hebdomadaires des
Séances de l’Académie des Sciences. Séries A et B 273 (1971), A238–A241. issn: 0151-0509.

[315] Daniele Venturi. Zero-knowledge proofs and applications. Lecture Notes, University of Rome.
2005. url: https://danieleventuri.altervista.org/files/zero-knowledge.pdf.

[316] John Voight. Quaternion algebras. Vol. 288. Graduate Texts in Mathematics. Springer,
Cham, 2021. isbn: 978-3-030-56692-0; 978-3-030-56694-4. doi: 10.1007/978-3-030-56694-
4.

[317] William C. Waterhouse. “Abelian varieties over finite fields”. In: Annales Scientifiques de
l’École Normale Supérieure. Quatrième Série 2 (1969), pp. 521–560. issn: 0012-9593.

[318] Benjamin Wesolowski. “The supersingular isogeny path and endomorphism ring problems
are equivalent”. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science—FOCS 2021. IEEE Computer Soc., Los Alamitos, CA, 2022, pp. 1100–1111. isbn:
978-1-6654-2055-6. doi: 10.1109/FOCS52979.2021.00109.

[319] WhatsApp Encryption Overview. Technical Report. 2024. url: https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf.

286

https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://danieleventuri.altervista.org/files/zero-knowledge.pdf
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1109/FOCS52979.2021.00109
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Table of contents
	Introduction
	List of Symbols
	I Preliminaries
	Cryptographic and Mathematical Preliminaries
	Modern cryptography
	Mathematical preliminaries

	Abelian Varieties of Low Dimension
	Curves
	Elliptic curves
	Hyperelliptic curves of genus 2
	Abelian varieties
	Abelian surfaces
	Isogenies between abelian varieties
	Pairings
	Isogenies of principally polarised abelian varieties
	Elliptic curves over finite fields

	Quaternion Algebras
	Quaternion algebras
	The Deuring Correspondence

	Isogenies in cryptography
	Superspecial abelian varieties
	The superspecial isogeny graph
	The general superspecial isogeny problem

	Quaternions in cryptography
	The isogeny problem as a quaternion problem
	SQIsign: a signature scheme from isogenies

	Overview of Literature and Contributions
	Foundations
	SIDH is broken
	Constructions

	II On the concrete complexity of the isogeny problem
	The isogeny problem in dimension 1
	Preliminaries
	An optimised implementation of the Delfs–Galbraith algorithm
	Fast subfield root detection
	SuperSolver
	A worked example
	Implementation results

	The isogeny problem in dimension 2
	Preliminaries
	Optimised product finding in the superspecial isogeny graph
	Explicit moduli spaces for genus 2 curves with split Jacobians
	Efficient detection of (N,N)-splittings
	The full algorithm
	Experimental results

	III Two-dimensional isogenies
	(3,3)-isogenies on fast Kummer Surfaces
	Fast Kummer surfaces and their arithmetic
	(N,N)-isogenies on fast Kummer surfaces
	Explicit (3,3)-isogenies on fast Kummers
	Generating (Nk,Nk)-subgroups
	A hash function from (3,3)-isogenies

	IV Accelerating SQIsign
	Cryptographic Smooth Neighbours
	Preliminaries and prior methods
	The CHM algorithm
	Searching for large twin smooth instances: CHM in practice
	Cryptographic primes of the form p=2rn-1
	Results and comparisons

	Faster verification for SQIsign
	Preliminaries
	Signing with extension fields
	Effect of increased 2-torsion on verification
	Optimisations for verification
	Size-speed trade-offs in SQIsign signatures
	Primes and performance

	Conclusion
	Bibliography

